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PREFACE

THIS book is prepared with a view to be used as a text-book
for the B.A. and B.Sec. students of the Indian Universities.
We have tried to make the exposition of the fundamental
principles clear as well as concise without going into
unnecessary details ; and at the same time an aftempt has
been made to make the treatment as much rigorous and
up-to-date as is possible within the scope of this elementary
work.

We have devoted a separate chapter for the discussion
of infinite (or improper) integrals and the integration of
infinite series in order to emphasise their peculiarity upon
the students. Important formulae and results of Differential
Calculus as also of this book are given in the beginning for
ready reference. A good number of typical examples have
been worked out by way of illustraiion.

Examples for exercises have been selected very carefully
and include many which have been set in the Pass and
Honours Examinations of different Universities. University
questions of recent years have been added at the end to give
the studenfts an idea of the standard of the examination.

Our thanks are due to several friends for their helpful
suggestions in the preparation of the work and especially
to our pupil Prof. H. K. Ganguli, M, A, for verifying the
answers of all the examples of the book.

Corrections and suggestions will be thankfully received.

CALCUTTA } B. C. D.
January, 1938 B. N. M.



PREFACE TO THE SEVENTEENTH EDITION

WE have thoroughly revised the book in this edition. For
the sake of the convenience of the students, the chapter
on '‘Integration by Successive Reduction” which was in
the Appendix in the previous edition, has been inserted at
the end of the chapter on “Infinite (or Tmproper) Integrals’.
Our thanks are due o our pupil Prof. Tapen Maulik M. Se.
of the B. F. College, Shibpur for his help in the revision
of the text.

B. C. D.

B.N. M,

PREFACE TO THE EIGHTEENTH EDITION

THE book has been thoroughly revised in accordance with
the revised syllabus of Mathematics for the Three-Year
Degree Examinations in Arts and Science. In this edition
a few examples have been inserted herc and there and
a chapter on the integration of Irrational Functions has
been added. We take this opportunity of thanking
Mrs. S. Chatterjee and Prof. (touri De M. Sc. for their help
in the revision of the text.

B.C. D.
B. N. M.



FORMULZE xiii

1

(ziv) o (sm ‘) = el (-1<z<1)

(zv) i-l— (cos™z) = — \/-1{;" [-1<z<1]
(xvi) (ta.n“m) i +1m='

(xvii) - (cot™a)= = L o .

(xvm) (cosec m)=~_ Jat =1 (lz]|>1)
(xix) (sec tx)= svpici zl>1)
(xx) (smh z) =cosh z.
(XXI) (cosh z) =sinh z.
(xxn) =~ (tsmh x) = sech®z.
(xxul) (coth a) = — cosech’z.
(xxiv) _{Z: (sech )= — sech z tanh =.
dx

(xxv) ;a: (cosech z) = — cosech z coth z.

(xxvi) dgx (sinh™'a) = :/(a:":’l_¥-1)'

(xxvn) (cosh 1g)= TeE g ( x> 1)

ey & 1y 1 , 2
(xxviii) - (tanh~1z) T (22 < 1)
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(xx1x) (cobh‘ z)= 1:1:2" (z2>1)

(xxx) a;; (cosech™z) = w-r/(—; 21—4_——1—)

(xxxi) ;1%: (sech™*z)= — m—\-/(il——_.'-l;—?)’ (0<z<1)

III. Important results associated with curves.

(i) Cartesian subtangent = -
Y1

(1) . subnormal =»y,.
(i) . normal =¥ /1 +y,%.

(iv) ” tangent = v ;\/1+'y1 .

(v) Polar subtangent =7 i d o \e=7

(vi) ,, subnormal =Z;= 1 ?;; (u= : )

. _dv. _dr. . o _dy,
(vii) tan py=-_icosy= i siny= g

.. _de. _dr. . _ df
(viii) tan ¢=r - i cosp=7 ;i sinp=r

as
(ix) ds®=dz? + dy® =dr® + r*d6>.
2
b (B 8 o4

dzx dzx dy dy
B <o S o
dr ae aeé
1
‘X)P".‘”‘“?'mlf G 1*(3‘5) ”*(3"5

x ‘ f 'a' 2 2 %‘
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IMPORTANT FORMULAZA AND RESULTS
of
(A) TRIGONOMETRY

I. Fundamental relations.

(i) sin%0 +cos?6=1 (iv) sin (— 8)= —sin 6
(ii) sec?0=1+tan®0 (v) cos (—6)=cos 6
(iii) cosec®6=1 +cot?6 (vi) tan (—6)= —tan 0,

II. Multiple angles.
(i) sin 2:44=2 sin A cos 4.
(ii) cos 24 =cos%4 —sin®4=1-25sin?4 =2 cos®4-1.

2 tan 4 . _1-tan®4
1-tan%4d’ (vi) cos 24 1 +tan®Ad

(iv) 1—cos 24 =2 sin%4 } (vii) tan®4 = 1—cos 24
(v) 1+ cos 24 =2 cos%4 Vi) tan 1+cos 24

(1ii) sin 24 =

(viii) 1 +sin 24 =(sin 4 + cos 4)>.
(ix) 1 —sin 24 =(sin 4 — cos A)%.
() sin 834=3 sin 4 — 4 sin® 4.
(xi) cos 34=4 cos®4 - 3 cos A.

s 0 g3 tan A—tan®4
(xii) tan 34 = 1—3 tan®4

cob A—3 cot 4
(xiii) cot 34 = S oolBA—1

fII. Special Angles.

sin 0°=0 cosec 0° =«
cos 0°=1 sec 0°=1
tan 0°=0 cot 0°= o
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sin 90°=1 cosec 90°=1 )
cos 90°=0 } sec 90° = oo -
tan 90°= oo cot 90°=0 )
sin 30°=1% sin 60°=14%./3 )
cos 30°=%./3 cos 60°=1% -
tan 30°=1/./8 tan 60°= /3 |
sin 45°=1/./2 sin 180°=0 )
cos 45°=1/./2 cos 180°=—1 ¢
tan 45°=1 tan 180°=0 |
sin 120°=1%./3 cos 120°= — %
. .o A/3-1. o_ AJ8+1
sin 15 = W cos 15" = 2./2
tan 15°=2— ./3.
sin 75°= “4'3:/-;1 ; cos 75° = "ég 72]

tan 75° =92+ /3.

sin 18° =3 ./5-1); cos 86°=2( /6 +1).
sin 223° =1 ./(2— J2); cos 22%° =% J(2+ ./2).

I1V. Inverse Trigonometric functions.

1 P §

. - 1 - . 1
(3) cosec 'z =sin > cot " lz=tan"! - ;

- — 1
sec Yz =cos - -
(i) sin™*z +cos™*z=4%n.

(iil) tan "z +cot " *z =%n.

(iv) cosec™z+sec™ 'z = }x.

3’_"1_’-!
1-—-

(v) tan™*z+tan"*y =tan™?
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. -1, g =1, . =1 ZTY
(vi) tan" 'z — tan~ 'y =tan LT ay

(vii) 3 sin~ 'z =sin"(8z — 42?).

(viii) 3 cos™*z=cos™ *(4x® — 3z).

. - 1 8z—2°
K 1 -_ 1 ——————— .
(ix) 3 tan~*z=tan =3
- . -1 2 -1l—z -1 2
1 = 1 — 1 i Y ;“— .
(x) 2 tan™*z =sin 1 4p2 =008 ] se=tan 1T

. Complex Arguments.

(i) (cos @+ 7 sin 6)® =cos 18 + 1 sin no.

11 — - x‘ 1-:-:.: -_— e -— n m-" sen
3 2nt+1
swe . m n m
=r— "o — + a8 o .

(iii) sin z== gt +(—1) (20 +1)! fo
2n-1

' -1 = — 1 3 1 5 -— s — n-1 m -
(iv) tan 'z =z - §2® + 32 +(-1) @n—1)

+rtoe -1 1.

(v) e®*=cosz+isinz; e *=cosx—1{ gin 2.

(vi) cos == 3(c*® + %) ; sin == }(e'® — %),
(vii) 2™ + ;-lﬂ =2cos nf ; "~ ;,.ln = 2¢ sin n6.

(viii) 2" cos™@=cos 10 +x cos (n—2) 6

’—"—(’;-_!"-Q cos (n—4)6+---

(n being a positive integer)

+
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(ix) (- 1)™2 2™ sin™8

= cos 70 — n cos (n — 2)0 +7—z—(%?—;~l—) cos (n—4)6— -

(n being an even positive integer)
(x) (__ 1)("--1)]2 2%—1 sin™0
= gin n0 — n sin (n — 2)8 +'n(1; ! 1) sin (n—4)8 — -*

(n being an odd positive integer)
V1. Hyperbolic Funections.
(i) cosh z=3%e®+¢7®) ; sinh z=3(e"— ™).
(ii) e®=cosh z+sinh 2 ; ¢ ®=cosh = — sinh =.
(iii) cosh?z —sinh?z=1.
(iv) sech®z + tanh®z =1,
(v) coth®z— cosech®z=1.
(vi) sinh 22 =2 sinh « cosh z.
(vii) cosh 2z = cosh®z + sinh %z
=2 cosh®’zr—1=1+2 sinh®.

_ 2tanh z
(viii) tanh 2z= L +tanh®s

(ix) sinh (— )= —sinh 2 ; cosh (—z)=cosh z.

(x) sinh 0=0; cosh 0=1; tanh 0=0.

( ) b + 3 m5+ m2n+1
xi) sinhz=2 3] 57 +(27-i+1)—-!+--- to o

4- wzn

(xii) eosh z= 1+2-'+4~l+ m+ to o
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(ziii) sinh~*z=1log (x+ /zZ+1) for all .

(ziv) cosh™*z=log (z+ /z?-1); (2> 1)

1+ 2
T g (z?2 <1)

1+ JA+2®) (o)
@

(xv) tanh™*z=1% log

(xvi) cosech™z = log

1+ J(l—=
@

2
(xvii) sech™*z=1log %) (0<z< 1),

(xviii) ecoth™*z=1% log Z;-'_-i (z* > 1)

VII. Special series.

(i) 1].. + 212 + 319 oeennes to oo ____7_252'
(i) 112 + 31.3 + 512 Joeenans to o =n82.
(iii) 14+214+§11+ ...... to w____;);
(iv) 114,= + 314 + gt bo o =9;

VIII. Logarithm.

loga m =log,, m/log a.



(B) DIFFERENTIAL CALCULUS

1. Fundamental Properties.

II.

(1) (%’ fu v xwt--- to n termst
gz + gg =+ gg o MALEEERN to n» terms.

. __av, du oy d _ du
(i1) &15: (%) =12 da'+v . (ii1) dor (coe) =

a da:
du — dv
(iv) (u) Y da _dm,
dz 2

(v) ZZ gz Zz{ here y-f(z) and z= ()}

Standard differential coefficients.

0 & (9=o0. () @)=
o a4 (1 ) a z
(111) dz (:;;n) == ;‘:?ﬁ (IV) dz (a.‘”)== a” log. a.
d ry . 3 _@_ o = ]—'
(v) da (%) = ¢ (vi) im (log. z) m_loga e.
(vii) ;Z&; (loge ) = i . (vm) L (sm T) = Cos Z.

(ix) j (cos z)= —sin 2. (x) c;m (tan r) =sec’z.
(x1) (cot z) = — cosec’z.
(xii) Z; (cosee z)= — cosec z cot z.

o d _
(xiii) T (sec z) =sec z tan .
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[. Fundamental Properties.

@) [ {f, (@) 2fs @) xfs (@) + ton terms} do

o

- f1 (@) d.??:_"j fa (z) de :tj fs (z) dz + +*- to n terms.

of

(ii) [ cf(z) de= cj flz) da. i
{1. Fundamental Integrals

(i) sa; dw*—-— (n#-1).

(11) j'—="'(n 1) n—.l(n#])

(i) 5 iz =12. i | J -f- 2 JE.

emm

(v) S =log |zl. (vi) J & dg="S -

(vii) 5 & dx=¢". (viii) j a” dm—l;-e — (a>0)

. . co8 T,
(ix) | si -

(%) 5 sin z de= — cos Z.

(xi) 5 cos mx dx = 91:1”:;1,:0_

(xii) 5 cos z de =sin Z.



xvi . INTEGRAL CALCULUS
(xiii) j sea’x dx =tan z.
(xiv) J' cosec?z dzr= — cot .
(xv) j sec r tan = dz =sec z.
(xvi) J cosec & cot x dx = — cosec .
(xvii) J. sinh 2 dz = cosh z.

(xviii) J- cosh z dz=sinh z.

(xix) J tanh = dz = log (cosh z).

(xx) J coth 2 dz=1log |(sinh x)|."

{xxi) J corech = dz =log |tanh 3z|.

(xxii) j sech z dz=2 tan™* (e%).

(xxiiil) J- sech?z dz =tanh .

[ )
(xxiv) J cosech?z dx = — coth .

ln\ Stﬁ‘ndir(t ‘l:ntogul'
o fre dz=1log |7,



METHQD OF SUBSTITUTION 33

zdr _ (.2 2
o [ S S (¥ > ")

[ Put £ —a®?=3"] .
. P___ do o [ dr
7. () ) 1+ +22 (i1) ) 4at+4r+5
- Jd’c -
o | Fde . dr .
8. () _‘1*-!-&-:3“ (1) ] 6z +Tr+2
9.’ [ rdr
) 2t + 222+ 2
[ cos r dr
10. ) sin®r+4 sin r+3
[ e dr
. ) g 0045
[ dr
12. J N1-22{1+(sin™ )%}
[ 2 dr
13. J 2% —6z® +5
14 i dr .
" ) 2§10+ 7 log a + (log z)*}
W[ xdr o [ r+1
15. () Jz®+22r+1 (i) ] 8+ 2r -2 dz.
A Y | A [ 2r+3
16. (i) | g2 +4w+5dw. (1) ) 4z® +1 dz.
~ [ (4 +3) dr o [ orde
17. () 53m’+3w+1 Gii) ) Q{?ﬁm—.wa.

2
18. _[52374— dz. [C. P.1935 ]
8
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19. (i) j :3+-2|-m2f-2 - (ii) _[m +:Ih}d -
20. | Lot vl g

21. J. Jwg’i’*’w-_—-g- [C. P.1931]

22. () J’,\/l“.i“:i ' (i3) j Js+3m+x '
23. :-:/g;ﬁﬁ%;n- [ P. P. 1932 ]

24. JF Jx"—d'?ﬂ g (Pemamet

25. | de

] J6+11z— 1022
cosxzde
b sin?z—12sin ¢ +4

26.

oF

dx

27 ) Jw-oXo=p)

A [ az | l
28. (i) N 2cwa:' z? (i1) N 2;: + 2

N [ +b oo | p 4 §
29. (i) J:: A , d. (1i) ,\/jf’r = a:3+ i

s0. [ 278 — g [c P 1926

: (z+1) . (2z-1)d
0.0 | fates e @ | G

dz.



METHOD OF SUBSTITUTION 35

82.0) } (542) yita (i) j Goi 1) T
.
da:
38- ) JEz¥ oz}
~ [ /z—3 o [ /2 +1
3. ) [o/275 da. 6) [o/22% 3 da.
A [ | d
35. (i) )@ ‘f;); Ja (ii) :Zx:l:—”
[ Put x=2] ?
A [ dr . P_-, _dr
36. () J ©Jztxa? (if) ) (L+2) 1-2?
(iii)J gz i) | dz
fU~/9:c ¥dz+1l J Q+a) 142 —2®
A de
v) j wa—lzx 1 (vi) J(1+z)Ji+z-22
(vii) J(a, .3) N/a: —61,:-:!-_8
87. (1)_[ Jo'-g? da. (11)J -I_-“J; [
dx 3= 42
38. J’ w—JT-I—-;—a' [ Put 142= ]
39. (i) J ,\/ - dz. (ii) J‘ T dz
40. If o < = < b, show that
I dx 2 b— ;
) (= a) Jiz—aXb- m) a—b
ANSWERS
1. tan-(z°). 2. (i) } tan-'(z?). (i) ilog ;’g,:

8. (i) tan-*(¢%). (ii) - sm"‘(z)n
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. - .s 2~cosz
4. (i) tan z~tan~'z. (ii) - Jog 5 008 @
5. (i) & log (x?+ /z*+a?). (ii) log {(1+a?+ A/1+2z%)/x}
s.=1 2—a? . 2 2 +1 s -
6. sin ‘;ﬂ_ Z,- 7. (i) J3 tan a:/3 (ii) # tan=*(z+3).
»./5+‘2r 1 2zx+1 —1fo2
8. (i) ~/5 8 J5—9r+1" (ii) log3 3 9, & tan~(2?+1).

1 1+sin T, w =1 z -1l =1
10. 2log 3+ sin 2 11, & tan~2{3(e*+1)}. 12. tan~!(sin—x).

1 2°=5 1 2+log = . 1
13. 19 lOg 'm—a_—_'i' 14. 3 1o, og 5+10{, 15. (l) log (w+1)+ z+1
(ii) —log (z—3). 16. (i) % log (x?+ 4x+ 5)—tan~"(x+2).

(ii) 1 log (4x®+1)+ 3§ tan-*(2x).
17. (i) 3 log (8z%+3z+1)+ :/23 tan—* { \/3(22 +1)}.

-3 J‘f+3+w

fll — —_m2
__.lb JTT = log(2 6x —x?).

(ii) 2 JII

18. z+log Z;; 19. (i) z—2 tan-(z+1).

2 2c+1
(ii) xz—1log (x’+m+1)+-~/-§ tan—* ( TJ3 )

1 o, 22—~1
20, #x?+2z-+4 log (z*—x+1)+ J3 tan~—? ’i/3 .
O +
21, 21log ( .Ja;+2+ Nz—1). 22. (i) sin~* 2'1:/51

L

24, 21log (/o= B+ N/o—4). 25. 4\/2‘ sin-> ;\/!-Of;‘i-

26. — »33 log { /3= 5 sz + A/5(2—sin z)}-




27.

3

METHOD OF SUBSTITUTION 87

2log (z—a+ Jz—p)- 28, (i) sin"(“-’%—“).

(ii) log (w+a+ Jz7+2az). 29. () /z?+a®+bloga+ o/z*+a?)-
(ii) 24/27+2+1+210g (c+3+ Jo?+ao+1).

: 52— 4 A

30. §/2a—8o+5. 31 () g sinm (P Y) -t Jarai-tan

(i) & \/ari+4c+2—log (2o+1+ \/de? + 4 +2).

: —— o 1 Jiz+3 -1
32. 2 -1 . 1 1( _ )l 'y

() 2 tan™* /142 (ii) , log NP {

3 . ] _ .

33. 1 N2m+1— N 84. (1) A/(z—3)w—4)+1log (A/z—3+ Jz—4).

8 J2n+1+ N3
(ii) & [2 /(e 1)(Ba+2)— N log (W8 J2z+1+ N2 \/3¢+2)]

. 1+ Jx Nz — 1
35. (1) log i‘_ N/J:' (11) 2 N’.E"I‘lOg N/ +1
. o 1 Jr?+at—a. 1 -1 & ‘s _Jl x,
(iii) log x—log (1 20+ /9ri+ 4z +1).
. 1 . _,{xA2 . . (a;-l)'
(iv) 3 sin ! (l +w) (v) sin N2

3.

38.

8zt ) (vii) sec=* (z—3).

(vi) sin~* ((1+w)-~/5 .
(i) ,‘/Eﬁ—x'ﬂ_+aloga‘— ’\/"’2““’?.

(V)

%3 log (W/I+2*—1)—log z. 39. (i) alog (Nz+ N/z+a)+ Nalz+a).

(ii) 2 \/z~a—2 Na tan~* (,\/{—;“)

(ii) log (c+ Jz—1)— 33-t




CHAPTER III

INTEGRATION BY PARTS

3°1. Integration of a product ‘by parts’.

We know from Differential Calculus that if # and v,
are two differentiable functions of z,

dne dvy
% -, 0

d _ du
dx (wv,) = dz’r v iz

integrating both sides with respect to z, we have

wvy = J(ZZ '01) dz +J(u%;;) dz,
or, J(u(i;;) de=uv, — j(%}' P 1) dx.

Suppose ‘f};‘ =, then v, = [v dz.

Hence, the above result can be written as

S(uv) dx-uS v dx—S{%Sv dx} dx.

The above formula for the integration of a product of
two functions is referred to as integratéon by parts.

It sf;a.tes that
the integral of the product of two functions
= Ist function. (unchanged) % integral of 2nd
— integral of [ diff. coeff. of 1st X integral of 2nd ].
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3°2. Illustrative Examples.

Ex. 1. Inlcgrate S xe® d.

I=¢gx S e’ dm—S{ggS e’ da:} dz

=xe’—s 1.e" dx
= pe* — e*,

Note. In the above integral, instead of taking = as the first
function and ¢* as the second, if we take ¢® as the first function and 2
as the sccond, then applying the rule for integration by parts, we get

f(e® 2) dz=¢".32* — [~ 3u? da.

Tho integral &fe*z? dr on the right side is more complicated than
the one we started with, for it involves x? instead of x.

Thus, while applying the rule for integration by parts to the product
of two funclions, care should be taken to choose wproperly the first
Sunction a.e., the function not to be integrated.

A little practice and cxperience will enable the student to make
the right choice.

Ex. 2. Inlegrate S log x dzx. [C.P.1928]
I= S log .1 dx.
~log @ S dw—S{ a (log ) Sdm} dx
dz )

1
=log v.x— SE x dw

=g log z— [dx

=g logx—2.
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Ex. 8. Integrate s tan='x dz. [ C.P. 1929,’36 ]

I=S tan~'z.1 dx

om0 )[ 0]

=tan~'z.x — Sljl-li:—‘ x dx

2

1
— -1 — - ——— ——
x tan~'z 3 )\ito0 dz

=gz tan~'z—3% log (1+23). [ By Bz. 5, Art. 2°2 ]
Note. Very often an integral involving a single logarithmic fumnc-
tion or a single inverse circular function can be evaluated by the applica-

tion of the rule for integration by parts, by considering tho integral as
the product of the given function and unity, and taking the given

function as tho first function and unity as the second.
This principle is illustrated in Exs. 2 and 3 above and Ex. 4 below.

Ex. 4. Integrate Slog (z+ Nz*-+a?) dr.
1={ 10g o+ Wi a2
=log (z+ Nz?+ a")s da:—S[ch_{IOg (a;+ J&;’Q—a")}-de] dzx

=log (z+ dx’4a“)-m-§:/-wj+ai- x dz

=g log (z+ Nz®+a®)— S ,\/ng-_aﬂ

;f;:zfa,-i' put 22+a?=22, so that ¢ de=2 da.

d —.
It el L e

To evaluato S



INTEGRATION BY PARTS

Ex, 5. Integrate Sm" e* dx.
IT=g3 ¢*—3(x? ¢* dz, integrating by parts
=g3 ¢*—3 [x® e —2[xe” dx], integrating by parts again
=x% " —3 [22 ¢~ 2 {re®— [e* dx}]
=3 =3 [2? ¢ —2 {re* —e"}]
=g3 ¢ —3x? ¢+ 6xe® —6e”® A

= (x®—3z2+6x—6) ¢,

3°3. Standard Integrals.

_e®*(a cos bx+b sin bx)
(A) S e®* cos bx dx= a2 152

b

eﬂx
cos (bx —tan™!'— )
a

= Jaz+b?

ax . -
(B) (et sin bx dx = £ sin bx =D cos bx)

eax . - - h )_
~ Jaitpe 5l (bx tan™" =
( Here a==0.)

Proof. Integrating by parts,
J. e cos bx dx = 6aw,51_nb_bgn - j( ae™” .smbbm) dz

ax _:
L ] P

41
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Now, integrating by parts the right-side of this integral

™ sinbr_a { am, — €08 b _J az | (;gqs _Qm) }
= ) 51 b ae b dz

ax . 2
e sinlbxr  a a
= -+ b2 ¢** cos ba; — —gj ™’ cos bx dx.

b b
transposing,
i o x +b si
(l + C'L'g) ¢"® cos br dz = o**(a -"99—’?-’; sin ¢
b b
aZ 2 + 2

Now, dividing both sides by 1+ b %.e., TE T We gob

, ¢*® (a cos bz + D sin bx)
J e cos br dz="- wge s
Again, putting @ =7 cos a, b=r sin aq, so that r= ./(a®+b?)

1

and a=tan" 2 on the right side of this integral,

we have, the right side

ax

e r cos (b — a) e 4 b
DTV IR JETP cos (bm—tan 1(1,_)'

Integral (B) can be cvaluated exactly in the same way.
Note 1. The abovo integrals can also be obtained thus :
Denoting the integrals (A) and (B) by I,, and I,, and intograting
each by parts, we shall get
. aI;—bIg’;ea: CcOB bx
and, bI,+al,=¢%" sin bx
from which I, and I, can be easily determined.

Note 2. Exactly in the same way tho integrals [e¢®* cos (bz+c) dw
and [e*® sin (b2 +¢) dx can be evaluated.
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3°4. Standard Integrals.

(C) Sx/xﬁ:l-”a"2 dxax_Jx:EEf_,l_%’ log|(x+ /x2+a?)|

@) {Vxrmaz ax=2AE-00_ 8400 Gt 2 =a2)|

2 2
- _XJAE-xR 8? L%
(E) S’\/az_xz dx 2 + 2 sin a ;"
Proof.

{C) Integrating by parts,

j JzZ+a? dx

— fd4 8
Jrt+al.x j2J“-I —o' 1 d

VR B S
+
Also, JJa: +a? dx = J‘f/m fa, d
2
1 ..
j~/ Py de-l_a',[va:(ia . -+ (i)

Adding (i) and (ii) and dividing by 2,

5 o _ZAe?+a® e  dr
J:Ja; +a? dz= 5 + 3 ) w1 g2
ST
O NTa L8 1og] o + Wt a)].

[ By Art. 2°8 (D) ]
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® | Vo= da

- %
= Jm‘—a2.m—-J———- . T A

2zt —a
- 2
T
«/:z:”—a, ‘/ g " u de
JNT @
2
(2®-a )+a.
=z /22 -a%- ") dx
J  ANx?-a*
o 2 o -
/97 r —a 2| dr
=z Jz%-q? dx—a ;
") Vzt-a? ) Nz?—a?
. r
_ G- o 5 2 dx
. J J Nz —a

Now, transposing [ /z2—a?dzx to the left side and
dividing by 2,

s 2 2 .
ij‘*—a“ dm=mJ";i"“ "92“ logl(z + Nz®—a?|
[ By Art. 2°8(D) 1]

Note. The integral (C) can bo evaluated by the mothod of evaluat-
ing the integral (D), and the integral (D) can also be cvaluated by the
method of ovaluating the integral (C).

(E) Although this integral can be easily evaluated by
either of the methods employed in evaluating integrals (C)
and (D) above, yet another method, the method of substi-
tution may be adopted in evaluating this integral.
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Putting z=a sin 8, so that dz =a cos 6 df, we get
J Jai-z? do= azjcosza do
=a®.3[(1 + cos 20) d6
=3a® [[cos 26 d6 + [d6]
=%}a? [} sin 20+ 6]
=142.5in 0 cos 6 + }a 26
=1 2.?Jl_ﬁz+ 2 .. —1
o™ o 3a° sin
a:g o =1 {If.

r \/(I."ah---'r“Z
=Y - 4 1n
2 2 8 a

QIR

Note. The integrals (C) and (D) can also be evaluated by putting

x=a sinh z and £=a cosh z respectively.

3°5. SJax=+b§¢a dx. (a#0)

To integrate this, express az®+0bx+c¢ as the sum or
difference of two squares, as the case may be; that is
express az® +Dbx+¢ in either of the forms af(z+1)* +m?}
or, a'{m® — (z +1)*} and then substitute z for z+1. Now the
integral reduces to one of the forms (C), (D) or (E) discussed
above. This is illustrated in Fx. 3 of Art. 3'8.

36 S(px+Q) Jai+bx+c dx. (a=0)

To integrate this, put px+qg= 2pa (2az +b) + (q - g-g) ;
then the integral reduces to the sum of two integrals, the
first of which can he immediately integrated by putting
z=az?+bx +c, and the second is of the form of the previous

Article. This is illustrated in Ex, 4 of Art. 3'8.
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3°7. S e*{t (x)+1 (x)} dx.

Integrating by parts [e*f(x) dz, we have
[e*f(z) dz = [f(x)e®dx =f(z)e® — [f'(z)e® dz.
transposing, [e*{f(z) +f(2)} dz = (z).

Alternatively, we may integrate by parts [¢“f'(z) dz, and
derive the same result.

Note. [e“¢(x) dz, when ¢(x) can be broken up ay the sum of two
functions of ®, such that one is the differential coefficient of the olher,
can be easily integrated as above.

3°8. Illustrative Examples.

Ex. 1. TIntegrate S e** sin 3z cos = dx.

I=4%fe%*.2 sin 3z cos z dx
=3%[e?* (sin 4x+sin 2r) dx
=3[fe** sin 4z du+ fe?* sin 2z da]
1 e,ﬂ:l: . -1 cﬂ& . y -1
= 5| oo Sin (4o —tan™* 2)+ g fin (2 — tan-* 1)
2T ol 1 .
__=e_2__ [—;/2—0 sin (4z —tan~"' 2)+ N/-S sin (2a:- Z)]
[ See Art. 3'3(B) ]

3
Ex. 2. Inlegrate chizm dz.

I=[e~3* cos’z de=1%[e"2* (cos 3z+ 3 cos ) dx

=3{fe~*" cos 8z dz+8fe~*" cos z du]

1[e " . e~ 3* .
=1 —1—8—--(—3 cos 3x+8 sin 3x)+3-—1-b—-(—Scos z-+sin x)

=e;’f{} (sin 3z —cos 3m)+3(si x—3 cos )}-
g |glein e 5 &0 "
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Ex. 3. Integrate SJ4+ 8z —5z* dx.

I={\/5(+3z—2%) dz
= 5[ /28—~ (18 — §o+2°) du
= V5[ N~ (&—3)* do
= 5§ AJa?—32% dz, (putting z=z—%and a=¢)

2 _TA 0
N z‘\/ag ? +‘_'32_ sin—* Z] [ By Art. 3'4 (E"]

il

(5z—4) /4+8z—5z% , 18 . (5w—4
= 5| L2 DT g2 ginm (B2
;\/)[ 10 5 +25 sin G )]

on restoring the values of @ and 2 and simplifying,

R y . 2y 18 -1(51"_—'@).
_10(.);1; 4),\/L+8;L—5a: +5~/5blll 6

Ex. 4. Inlegrate S (Bz—2) Jz? -z +1 dx.

Sinco 3x—2=3 (2x—1)-3,
I=2{(2c—1) NJz* =z +1 de—3[ NJz? —z+1 de.

To evaluate the 1st integral,
put z=z*—z+1; .'. dz=(2x-1) dz.

3 2
1st integral=[ /2 dz=%3> =3%(x? — 2+ 1)*.

2nd integral=f J (x—3)*+2 do
=[ AJ27+a? dz, putting z=x—3% and a?=2,

2 2 2 -

=3} (2z—1) A/z? —z+1+8 log (&~} + AJz* —2z+1).

I=(z? -+ 1)¥—3 @Qz—1) eT =z +1
~ s log [(@—&+ Jz?—z+1)],
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Ex. 5. S“"*‘”“- , . P.
X. 8. Integrate N ‘+2w+3dm [C. P. 1929 ]

S(:c +2z+3)— (.u+2)
o2+ +3

z '*_'2?;'*‘3 —S_.-_-mt?-.-._.. z
Jm +2z+8 Nz +2z+3

3 (2z+2)+1

Nz2+22+3 dz

=S Nz?+ 2543 dm—s

_ —— g o 1( (22+42) dz
S Ve+1)*+2de 2 S Nz 2243 S J(x+ﬁ'r4:b

Denoting the right-side integrals by I,, I,, I,

-(wheroz z+1, a?=2)

I1—13=SJ22+02 dZ_S‘ s
Nz
=324/2"+a?+3a? log (s+ A/z*+a?) —log (s + N3 +a?)

=% (z+1) \/z®+ 2z + 3, on restoring the values of 2 and a?,

Putting 2 +2x+ 3=2, so that (2c+2) dx=dz,

IQ=S(:/Z=2~/Z—2J$ -} ')x-—l—-}

I=3% (e+1)/z?+ 20+ 8~ Jz*+22+3
=3 (z—1)/z* + 22+ 3.

Ex. 6. Integrate S(mﬁ-pn’ dr. [ C. P 1930, '33, ’37, 48 ]

(x+1) ¢©—o® _S & _S i
I= S (z+1)? dz= m+1dm (z+1)? dz.
Integrating by parts, the first integral

1 1 e 1 .
Sm+1'c dm—;:—-l:i +S(w+1)"e dz.

o I=o i
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Ex. 7. Prove that ( if a5b )
. (%) S e®® sinh bx do= -3 (a sinh bx—b cosh bx).

(¢4) S e*® cosh bx da:=E.,-_ X (a cosh bx—0b sinh ba).

(i) Integrating by parts,
=8 cosh bz S“" cosh bz

b b
=% c%sh_lzg_ ‘;Se‘”‘ cosh bz dx. e (1)

Again integrating by pa.rts,
¢ cosh bx dg=2 SR DT_ af ez gy by da
O

b
e sinh br _ a
=L STRDT_ 4y @)

From (1) and (2),
_¢"coshbx_a _,,
I= b —pa® sinh bas+b, I

Transposing,

nxe
(1 b’)I -(-’—b-.; (b cosh bx—a sinh bzx).
I=a.':—b’ (a sinh bxz—b cosh bz).

(ii) This integral can bo cvlauated in the same way.

~

Allernatively we can use the exponential values of sinh z and
cosh 2 to evaluate these integrals.

Thus, fe** sinh bz dz = [¢**.3(e?* —e~%*) dx
= %J’{e(a+bm — e(a-mz} dx

_ 1 {e(a+b)x e(a—?)x}
2 a+d a—b
1 az'{ e'f‘_“ e~

9%

1
= e

’

LY

ARG,

pa lat §(e> ~ 8'") - h'i('e""l‘ 9"’)]
b’ [a sifh bm 2 b cosh ba].
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EXAMPLES 1II

1. Integrate the following with respect to z :(—

(i) z sin . (i1) 22 cos z. (iil) ze™

(iv) z" log . (v) 226~ (vi) z sec®z.
(vii) sin™ 2. (viii) cos™1z. (ix) cosec™'z.
(x) see™ 2. (xi) cot™'z. (xii) cos™?* (1/x).

(xiii) z sin™z. (xiv) z% tan"*z.  (xv) 2 cos nz.

(xvi) (log z)%.  (xvii) = log . (xviii) sin~?t /2.
. 14z log ('r + 1)

(xix) log (1+x) (xx) (z+1)*

(xxi) log (14 222 +z*). (xxii) log (z* + 52 +6),

(xxiii) 2® cos 2z. (xxiv) z° (log ).

Integrate :(—

r
276) z sin’z dr. ﬁ) J x sin o cos a dr.
o

8. (i) | log(x— z2-1) dz. (ii) J log (22— 2 +1) dz.

~ [ 1
4. () {log z (log cr)’a} de. (i) J 1 +-c—o-s“ x de.

.
5. (i) _; sin o log (sec z + tan z) dz.

(if) J cos « log (cosec z + cot ) dz.
6. (i) j cos 2z log (1 + tan z) dz.

(ii) J’ cosec?z log sec z dz.

7. (3) J sin~? (3z - 42°) dx. (i) J (sin~1z)? dz.



10.

11.

12.

13.

14.

15.

186.

17.

18.

19.

INTEGRATION BY PARTS

i 1 1-2*
1
i cos = dax.
(i) ] 1+ 2%
r
. - Qv
. 1
i sin dzx.
() J 1+ 3 2
[ cos™ 1z
@) | s 7 da.
J
(i) [ g:_s;j_n __1”' dx
J ‘\/1—552 e
(i) | ¢® sin z d=z.
J

(iii) J 9% sin z dz.
(v) J ¢® sinh 7 dx.

(i) J ¢ sin’z dur.
em tan—-1 x

(L+z

(1) J

m+mn%
1+cosa:

sin @

. -1 m
sin \/ . = az.
rt+a

-

j tan~t (1 -’-.CQE’T) dzx.

o

]

em
= (1+2 log z) dz.

¢® (cos z + sin z) dz.

G |

(i)

o

(ii) )

(ii)
J
(iv) )

(vi) )

G |

r.

51

e® cos x dzx.

3" cos 3 dx.

¢ cosh o dzx.

(ii) fe"" 8in 7 sin 2z dz.

(ii)

2)2 de. [Puttan ' z=3z]

[C. P. 1929 ]

log (z +1)
;\/.’1'_,‘ T 1 dx-

[ Put x=a tan®6 ]
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20.

21.

22.

23.
24.
25.
26.
27.
28.

29.

INTEGRAL CALCULUS
() J ¢” (tan 2 — log cos z) dz.

(i1) J e” sec z (1 +tan z) dz.

» (1—2)*
(i) j ( +1\2 dex. (ii) J 1+ 2)2
) i +1 x2-1+92 1 2
["‘) Write (w+1)= (@+1)? :+1+(a:+1)"]

. z 1+sin z v [ z1-sinz

(i) J‘ & T oos o dz. (ii) ) 1= cos @ de.
— sin 2% .y [ .« 2+sin 22

(i) J‘ —cos 2z de. (iv) ) ¢ 1% cos 2z dz.

j JIE =68 da.

@) | V/5-2z+2% dz. (ii) | Ji0—-4z +422 dz.
o o

() | J/18x—65—22 dz. (ii) | ~/4-38z—22° d=.

o

NboxrZ +8z+4 dx.

[ dx

J T+ A Jw -1
N 2ax—x? de.

Sa

J(w-a)(ﬂ—a') dx. [ Put x=a cos®0+ 8 sin?0)
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30. () ; (x-1) Vo=l de. (i) j(a+b) JETa do.
31. () J' (c-1) Va¥—5¥1 da.

(ii) | (z+ 2) V/22%+9r +1 da.
o

) [z et o [27+20+3
2. | ) ui-a () j Jo +zt1
x> + 2:1:2 +z-17
: atw ‘s -z
34. (l) "-Ja_w dz. (11) Jw,\/a_*.w dz.
+
35. J(” j;“/’;*z dz. [ P. P. 1934 ]

36. If u=J’ e®® cos bz dz, v =J e*® gin bz du,

prove that

. (@) tan™* Y +tan™? b =be.
. u a

(ii) (a'2 + bz)(’ll,z' + 1)’) = g20%

ANSWERS
1. (i) —z cos z+sin 2. i (ii) (a:“ —92) sin ¢+ 22 cos 2.
1
(111) (aa: -1). (1v) [log z— —_—F-l]
(v) e (x* —22+2). (vi) « tan @¢+1log cos .

(vii) @ sin~'e+ N1—=z2. (viii) @ cos™'m— \/1=g".
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(ix) @ cosoo™g+1og (z+ J27=1).  (x) @ sce~'w~log (e+ JzT—1).
(xi) z cot-'z-+3 log (1+a?).  (xii)  seo~*z—1log (v+ /z7=1)-

(xiii) 32? sin~'z—3 sin~'a+3x /1~ 22.

(xiv) 3z® tan-'x—}x?+% log (1+x?).

(xv) @ sin ?1@2_'_0_9;:1@. (xvi) z (log «)® —2z log =+ 2.
(xvii) #x? (2 log 2—1). (xviii) (z—3) sin™* Nz +3 /2(1—a).

(xix) & (1+2)? log (1+2) -3z (x+2). (xx) —(142)"* [log (1+z)+1].
(xxi) 2 {z log (1+22)—22+2 tan~'a}.

(xxii) (z+2) log (x+2)+ (x+3) log (z+ 3) — 2z.

(xxiii) z (222 —3) sin 22+ 3 (2?—1) cos 2z.

(xxiv) 1z* {(log z)*—3 log z+3}.

2. (i) & (2r% —22 sin 2x—cos 2z). (ii) —3x ens 22+ } sin 2.

3.() xlog (2 — \/Jo® ~ 1)+ fx?—1.

(ii) (z—3) log (x*—2x+1) ~22+ A/3 tan—? 2?7,—0]-
N
4. (i) = (log x)~'. " (ii) z tan 3z +2 log cos 3.
6. (i) &~ cos x log (sec z+ tan x). (ii) sin x log (cosce x+cotb x)+ 2.

6. (i) sin  cos z log (1+tan x)—3z+% log (sin x+cos ).
(ii) —eot & log (sec x)+.
7. (i) 3 (x sin~ 2+ \/1—422).
(1) z (sin='@)*+3 \/1—* (sin™'2)? ~ 6 (z sin~'z+ /1 -22).

8. (i) 2z tan~'az—log (1+z?). (ii) Same as (i).
9 (i) Same as 8 (i). (ii) 3z tan~'z—§ log (1+x?).
10. (i) “ib/i—?;:-g_-;-?;‘ eos, (i) & [2 cos—'z— N(1—a?)].

th=—1
(ii) z 8in~ 'z

11. (i) z— /1 —g? sin~'z. J1 _-_;’,+§ log (1—2?).



INTEGRATION BY PARTS 55

12. (i) #e* (sin 2z —cos x). (ii) 3e® (sin z+cos ).
i1 2% 8in {z —cot~? (log 2)}
() =1 5 og )"
.y 3743 sin 32+ (log 8) cos 3z}
(iv) == 9+ (log 8)*

(v) 1 (cosh 2z+sinh 2z)—3z. (vi) # (cosh 2z+sinh 2z)+3z.
13. (i) 3e* {1—1 (cos 2z+2 sin 2z)}.

(ii) 1e® {(cos z+sin x)—3 (cos 8z + 3 sin 3x)}.
e tan-1g [ 1 1 1-2%, 4 -
14. - 2 [;z +3nﬁ+4 {m 14—m’+i:k'5“}]'
15. (i) = tan 3. (i) 2 A z+11og (z+1)—4 \Jz+1.
z\§ -
16. Awz—31x2. 17. (z+a)tan™* (a,) - Naz.
18. ¢° sin 2. 19. ¢* log =.
20. (i) €® log sec z. (ii) e* sec «.
o zZ—1 oy €7 O
21. (1) (4] 241 (") 1+mg (1") (1+m)l
22. (i) ¢® tan %2x. (ii) —¢® cot 3z. (iii) —e”® cot .
. 5 s
(iv) €* tan z. 23. ; N 25 —9x? +260 sin"‘%:-

24.(i) % (z—1) \/5—2r+2?+2log (v —1+ /5—2z+2?).
(ii) 3 (2x—1) \/10— 4z +42* + % log {22 — 1) + /10— 4+ 4z2}.

25. (i) } (@—9) \/T85 =053 +8 sin~* % (z—9).

s\ R ) | . _, 443
(ii), % (42 +3) ~/4—3x—2a;‘+32~ A2 sin~? —-:E/ﬁ--

26. 116 (52+4) o/b27 + 82+ 4+5 %/5 log {(5z+ 4)+ A/5(52% + 8z + &)}

27. ¥ {z(z— \Jo7—1)+1og (z+ \/z¥—1)}.

28. % (—a) J%_—z?'*'ﬁ“’ sin~?* (x;—a)

x—

9. 1 [to=a-p) JEZAE=R+ B0 sin-rq/ ]
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30. (i) 3 (c®—1)7 -3z NET—1+4 log (z+ a3 =1).

(ii) 3 (*+a*)  +3bz o Fa7+8a% log @+ NEi+ad).

(ii) & (2x?+2z+ 1)’3+§ (2z+1) 2™ +22+1

+ g7 108 {22+ 1) + N ¥ 25+ N

32. (i) 3 sin~'z—3§ (z+2) /1 —2".

(i) 2 Qz+5) Joi+z+ 1+ log {lw+3)+ Jo? Fz+ 1}
83. 3 (x*+2c+3)T—4 (z+5) NE2+25+3—6log (w+ 1+ Wx*+ 2x+3).
84. (i) a sin=* Z - Na*—=zi. (i) (dx—a) \aT=x®—3a® sin~? -:f .

35. % (z+6) \Jzi—4+4log (x+ /22 —4).



CHAPTER IV

SPECIAL TRIGONOMETRIC FUNCTIONS
4°1. Standard Integrals.

(A) S cosec x dx =log !tan g— :

Proof. jcosecmdm= _d.'z:___j dw

sin z )2 sin %z cos 3z
| 3 sec” 3z
tan 4z
( on multiplying numerator and denorminator by sec? 4z )
=log | tan 3z|

since, numerator is the diff. coeff. of denominator.

(B) Ssec x dxr-log’ tan (% + -’-;)j

=log|(sec x+tan x)|.

—\ gz _| _ dr____
Pyroof. J sec mdw—j vos @ J sin (3 ¥ 2)
dx

2 sin (3n + 32) cos 3n +3x)

¥ sec’(3n+ ¥n) dx
tan (3n+ 32)

=log|tan (3= + %z)| as in (A).
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Note. Alternative Methods :
| cosoc z (cosec z—cob 2) , _ -
S cosec ¢ dx= S O8G0 5= oot & dz =log| (cosec x—cot x)|

ar sin 2
cosec T do=\———=\ . +—dx
sin © sin‘e

S A (cos )

—S Az » where z=cos8 &
1—cos?zy 1—3* ’

_110 1—z_ ll =1-—cnewl
2 1%, 2

'1+cosm

-— dx=1log |sec x+tan x|,

S S snc » (sec ¢ + tan x)
sec © dz =
sec &+ tan

since the numerator is the derivative of the denominator.

cos x d (sin )
secx dx = . dr=\—T—1=
cOo8“x 1—sin“gz

dz 1
—Sl-—z 19;l ?) where 2=sin

_ 1, l+sing:
2 g l—sin

Ssecw de =S dn —S dx

cosz ) cos?zr—sin*dx

S sec?*3x dr
=

dz .
1S g =2 ) 1Tt whoro £ =tan o

=log ?!._-l_-z =log |1+tam é'ri

1-—- |1—tan§.z:l

It should be noted that the differont forms in which the integrals
of cosec # and of sec © are obtained by different mothods can be easily
shown to be identical by clementary trigonometry.

Thus,

—cosg| 1 2 sin? gx| _

= l P

- 2
8 1+cosm 9 .08 '3 cos? 3zl 10g|tan 32|

=log |tan dz| ; etc.
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. dx
2. Sa+b CcOS X

The given integral

.

dx
) a (cos? 2z +sin? 3x)+b (cos? iz —sin? %z)

- *"

_ sec® dmde
J (@+0)+(a—0) tan® 3z

( on multiplying the numerator and denominator by sec® 4z ).

Casel. a>10.

Put Wa-btan3z=2z; .. 3} Ja-0bsec® lzdr=dz
The given integral now bhecomes

L2\ _dz

\/a.—b (G:+b)+32

’ _2 1 2 .
;7;-.2--:-5—9; fan \rd—'i'b [ See (A): Art. 2 3. ]

o 3t (/)
Ja?= bt tan a_l_btan 9

~1 (h+a cos "').

) _ 1
2.6.  NMa®*-b* ban "\ 75 B cos 2

Case II. a < b.
Put Jo-atan dxr=2; ... 3. b—a sec? iz do=dz.
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As before, the required integral becomes

2 J’ __ds
Jb—a ) (@ +b)— 22
2 1

[ See (0), Art. 2°3 ]

-1 Io l{ Jb+a+ Jb—a tan ?,m'}
JbE—4? Jb+a— Jb—a tan 3z

Note 1. Hers it is assumed that e >0, > 0; if a<0, >0
or,a>0,0<0, or, a <0,b <0, then the integral can be evaluated
exacfly in the same way.

Note 2. (i) If b=a, the integrand reduces to le' sec?4x, the intcgral

of which i is ~ 1 tan §a.

(ii) If b= —a, thejintegrand reduces to EJ; cosce? , the infegral

of which is —}b cot 3z

< . dx
Note 3. By an exactly similar process, the integral S a+ b sln x

dx
a+b cos x+¢ sin x

sin ¢ and cos £ in terms of 3z and thon multiplying the numerator
and the denominator of the integrand by sec? 3z and substituting z for
tan 4z. This is illustrated in Examples 3 and 4 of Art. 48 below.

can bo evaluated by breaking

or more generally S

In fact any rational function of sin x, cos « can be easily inte-
grated by expressing sin 2 and cos z in terms of tan gz, i.e., by writing

T 2tanje _1-—tan® §z
sin@=y - 0% 32 and cos z= 1+ tan® 32
and then putting tan ¢z =2.

Similar integrals involving hyperbolic functions can be evaluated
by an exactly similar process.
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4'3. Positive integral powers of sine and cosine.

(A) Odd positive index.

Any odd positive power of a sine and cosine can be
integrated immediately by substituting cos x =2 and sin 2=z
rospectively as shown below.

Ex. (1) S sin’x dr= S sin?z sin ¢ de= — S (1 —cos?z) d (cos z)
”N

=—[(1-2%) dz [ Putting 2 for cos = ]

= —(z—32%) = —(cos z—¥ cos®z).

Ex. (ii) 5 cos’x dm=§ cos*z cos z dz= S (1-sin?g)? 4 (sin z)

=[(1-2%)?dz [ Putting s for sin z ]
=[(1-2z2+35%) de=2z—42*+ 12"

=gin £ —% sin®z+ % sin’z.

(B) Even positive index.

In order to integrate any even positive power of sine and
cosine, we should first express it in terms of multiple angles
by means of trigonometry and then integrate it.

Ex. (iii) Integrate S cos*x dx.

cos*z={% (1+cos 2z)}? =3{1+2 cos 2z cos?2z}
=3 [1+2 cos 2z+% (1+cos 4x)]
=3+% cos 2x+ % cos 4z.
Jeos*z dz=[(§+% cos 2zx+3 cos 4z) dz
=8z+3 sin 22+ 45 sin 4z.
Note 1. It should be noted that when the index is large, it would

be more convenient to express the powers of sines or cosines of angles
in terms of multiple angles by the use of De Moivre’s Theorem, as

shown below.
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Ex. (iv) Integrate S sin®z dz.

Lot cos z+ising=y, ) .* cos nz+isin nx=y"
then, cos x—1isin z= 5 J' cos nx— ¢ sin nm=-!%,.-
. 1 _ ny L
. y+ - =2cos ® y"+ =2 cos nx
Yy Y
Yy — 1 =2¢ sin @ Yyt — l,;=21'. sin nz.
Yy Y

*. 92%:° sin®x

1\®
=(y— y)
(e 2)-al (54 2) < o
=2 cos 8z —8.2 cos 6+ 28.2 cos 4x —56.2 cos 2x-+70.
sin®z=2"7 (cos 8z — 8 cos 6x+ 28 cos 4z —56 cos 2x+35).
Jsin®z de=2"" [(cos 8x—8 cos 6x+ 28 cos 4@ — 56 cos 2+ 35) dx

1 [sin8x 8 sin 6z sin 4z sin 22, ..
=g1 [— 8§~ " ¢ + 28 4 56 ) ~—l3.>.z:]

=§17 (% sin 8z— % sin 6x+ 7 sin 4o — 28 sin 22+ 35z].

Note 2. When the index is an odd positive integer, then also we
can first express the function in terms of multiple angles and then
integrate it ; but in this case, it is better to adopt the method shown

above in (A).
Thus, fsin®z dz=[4(3 sin z—sin 3z) dz= —§ cos 2+ i cos 3z.

4°'4. Products of positive integral powers of sine
and cosine.

Any product of the form sin®z cos?z admits of immediate
integration as in Sec A, Art. 4’3, whenever either p or q is
a positive odd integer, whatever the other may he. But when
both p and q are positive e en indices, we may first express
the function as the sum of a series of sines or cosines of
multiples of « as in Sec. B, Art. 4'3, and then integrate if.
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Ex. (1) Integrate S sin?z cos®z dz.

I=[sin?z cos*s cos z dr
= [sin% (1—s8in2z)? 4 (sin z)
=[2% (1-2%)? dz, [ putting z=sin z ]
= [(2® —22* +2°) dz
=%z%—225+ 5"

=% sin®z—2 sin®z+ 4 sin"z.

Ex. (i) Integrate S sintz cos’z dzx.

Let cosz+isinz=y; l . cos nx+isin ne=y"
then, cos £—14 sin o:=-1— J cos nx—14 8in nr=-,-
Y Yy
9+ 1 =2 cos x y"-i—-l =2 cos ne
L] y . LS y,‘
1—1=2-' sin na "—1=2isinwx
Yy y L n. Y 3" .

. 2%34 gintx cos®x

(o= 2 e Y o)
“{r-ae2)or-aed)

1 1 1
= (v o) 2w+ 5) = (v7+5) +4

=2 cos 6x— 2.2 cos 4x—2 ros 2z + 4.
*. sin‘z cos?z=2"5 [cos 6z —2 cos 4x—cos 2z+2].

.. [sin*z cos?’z dz=2-% [(cos 6x —2 cos 4z —cos 2z+2) dz
L1 [sm 6z _2sin 4z sin 2a:+2w]

2°L 6

6 4 2
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Note. The expression sin® x cos? 2 also admits of immediate inte-
gration in terms of tan x or cot @ if p+q be a megative even inleger,
whatever p and ¢ may be. In this case, the best substitution is tan
or cot x=2. For other cases of sin? ¢ cos? z, a reduction formula is

generally required. See § 8'14—817.

. sin’z
Ex. (lil) Integrate S;c;.;“a: dz

Here, p+9=2—6=—4; .. put tan z=2z, then sec’z dz=do.
Now, I=[tan*z.8ecs do
= [2% (1+2%) da=3%2%+}2°

=% tan’z+ 1 tan®z. .

Ex. (iv) Integrate S _ L

sv',-nim cos®x

Here, p+q=—4—%=-4; .'. put tan x=2, then sec’z dz=d=.

4 2
I=S sec (L_'z_:=s 1+32 iz

Now, 3
tan“zp z

8
= J'(z + z‘) dﬂ=23&+%z”

=9 ta.n%m+-'_.'; tan’s,

4’6. Integral powers of tangent and cotangent.

Any integral powers of tangent and cotangent can he
readily integrated. Thus,

() [ tan®z dz=[ tan z.tan%z dz=[ tan z (sec?xr—1) dz
={ tan ¢ d (tan o) —f tan z dz=3% tan’z~—log sec z.

(i) [ cot*z do={ cot’x (cosec?z— 1) dz
= [ cot?x cosec’z de— [ cot’x dz
= — [ cot?z d (cot z)= [ (cosec?z—1) dx

= ~ % cot*z+cot z+.
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4°6. Positive integral powers of secant and cosecant.

(A) Ewen positive index.
Even positive powers of secant or cosecant admit of
immediate integration in terms of tan z or cot 2. Thus,
(1) [ sec*z de=[(1+tan?z) sec?z dr
=[ sec?x dz+ f tan?z d (tan )
=tan ¢+3% tan’z. P
(1) [ cosec®z dz=/[ cosec*z.cosec?z dz
= [(1+ cot?z)? cosec’z dz
= — [(1+2 cot?z+ cot*x).d (cot x)

= —cot z—% cot’z —1 cot’m.

(B) Odd positive index.

Odd positive powers of secant and cosecant are to be
integrated by the application of the rule of integration
by parts.

(if) [ sec®s dx=/[ sec z.sec’x dz=sec z tan z— [ sec = tan®z dz

=gec ¢ tan z— [ sec z (scc?z—1) dz
=goc 2 tan z+ [ sec ¢ dz — [ sec®z dzx.

.*. transposing [ sec®z dx to the left side, writing the value of
J see z dz, and dividing by 2, we get

1 1 T, 2
3 — - —
J sec mda:—:zseca:ta.na:+2]ogtan(4+w)

@iv) [ see’z dz= [ sec’x sec’z dz
=sgec?z tan z— [ 3 sec®z tan?z dx
=secz tan z—3 [ sec’z (sec’z—1) dz
=gec’z tan z+3 [ sec®z dz—3 [ sec’s de.
Now, transposing 8 [ sec3z dx and writing the value of [ seo’z da,
we get ultimately,

tan o sec’z , 8 tan 2 sec 3 1 ( @
5 = il ol
J secSz da i + 2 5 4 log tan 2 2)
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(v) [ cosec®z dx= [ cosec  cosec?z dx
= —¢osec & cot — [ cosec & eot’x dx
= —cosec ¢ cot o— f cosec = (cosec?z—1) dx
= —cosec x cot z+ [ cosec ¢ dx— [ cosec’z dx.

transposing [ cosce®s de and writing the value of [ cosec z dx,
f cosec®z dx= —% cosec x cot ¢+3 log tan .

4'7. Hyperbolic Functions.
(i) S sinh x dx =J 3™ —e™") dx=¥e" + ¢ %)= cosh x.

-

(ii) S cosh x dx = | (¢ +¢7%) dz = ¥(e® — ¢ *) = sinh x.
(iii) S tanh x dx = | 570 T g =1log (cosh x).
Jceosho
(iv) S coth x dx= 933}—1—"—' dz =log |(sinh x)]|.
sinh o
(v) Scosech x dx = S dz —2[ 5,;07'5-"7.:3c
sinhae Je"—e
e’ dm
2J62m — 1
~(-1_- .1 z
J(e"—l e”‘+1) d (¢°)
log |&—= 1.
g e*+1|

=]log |tanh 1x].

%l']

[on dividing the numerator and denominator by e

) a ®
(vi) Ssech x dx =j—;—g—w = 2J-1-—f---2, dx

2J d Jr("?, 2 tan="(e*)

=2 tan~* (cosh 2 + sinh z).
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Otherwise :

Ssechxdx=j—--@3’—— =J dz

cosh £ Jcosh? 3z +sinh? 3z

[ } sech® 4

a4 d
] 1 +tanh?® 3z o

=2

[ dz .
2J I [ on putting z=tanh 3z ]

=92 tan~ 'z =2 tan~ ' (tanh ix).

(vii) S sech®x dx =tanh x.
(viii) S cosech?x dx= - coth x.
(ix) S sech x tanh x dx= —sech x.

(x) Scosech x coth x dx = - cosech x.

4°'8. IDustrative Examples.

dx

Ex. 1. Imifcgrate S a su x+bcosx

Put a=rcos 0, b=r sin 8, then @ sin w4+ b cos x=7 sin (c¢+0).

Here r= Ja?+56® and 0=tan~? 3 .

_ dzx _ 1t )
I_Sr sin (z+8) ’_S cosce (xz+6) dc

]

:_— S cosec z dz, where z=x+8

r+8

1
r 2

- 1 2 _
=, log ta.n2 log tan

= 1 - m 1 -lb)’.
Javip log | tan (2+ 9 tan a

Note. Since, as above, 8in £+ cos £= /2 sin (:c+ -1—')-

67

[ C. P. 1928, '30 ]
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g _ 1 T
S sin z+cosz A/2 S cosec (:c+ 4) dz
it a\|
ngo, tan (—2— +§);'

dz
Ex. 2. g e e 3"
X. 2. Integrate S a® sin*z+b? cos’x
Multiply the numerator and denominator by sec?z and put
tan x=2,
—=\. dz _1 dz _b

I Sa,“z’+b’ a"S St Where k= a
1 1 n-1% = ) (a. )
T AT Ty en e

.dx — L[]
—13 s z

T= S dz .
5 (sin? %z +cos? 3x)—18.2 sin 3= cos ¥

Ex. 3. Integrate S 5

Multiplying the numerator and denominator by scc? 3z, this

sec? 3z do

5 (tan® 3z 1)—26 tan &z
22 —9262+5
ds

5)3__(_12_)'2

[ putting tan 4z=2 ]

i
l

J'@

3 a.—’ where u=2z—23% and a=23

- UKD QR (R

oy ™y O
A

z2—5H

-1
=3

= 8

oz ¥ %= 1
8 uta 12
o 15 tan §z—25;
12 "% | 5 tan go—1
on restoring the value of z.

m 1
(=)

log

d

fmd

dz
Ex. 4. Integrale S BFScosetdmne [C.P. 1953 ]

I=S 18 (sin? 4z +cos? §x)+ 8 (cos? 4z~ sin? x)+ 4.2 sin 3z cos 4z
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Multiplying the numerator and denominator by sec? §z, this

sec? 3z dx

10 tan* 448 tan 4x+ 16

=S 2ds
10s%+82+ 16

[ putting z=tan 4z ]

S 1 du
~3 (z+s)’+(§)‘ u?+a?
where u=z+3 a=%

_1_ _111,__1__15z+2
5'a a et e
1 -

6 6

‘ 28 2+3 cos x
Ex. 5. Iniegrate S 3 sin 2 4 oo @ die

Lot 2 sin 2+ 3 cos «
= (denominator)+m (diff. of denominator)
=1 (3 sin g+ 4 cos x)+m (3 cos x—4 sin )
=(31—4m) sin z+ (41+3m) cos =.

Now comparing cocfficients of sin x and cos # on both sides, we
get 3l—4m=2 and 41+ 3m=3 whence I=32, m=1%.

2 sin ¢+8 cos £=12 (3 sin 44 cos z)+4'5 (8 cos x —4 sin x).

. Jcosr—4sinx
"t ,..5Sd + Ssqmw+4cosxl£

=382+ % log (3 sin & —4 cos 2).

asin x+b cos x

csin x+d cos X dx can bo treated in the same

Note. Generally S

way.
Ex. 6. Integmtes e = —~—1—.- 2 -+ do
' sin (z—a) sin (x—d)
1 1 sin {{x —b)—(x—a)t
sin (z —a) 8in (x ~b)_ sin (a—b) sin (x—a) sin (z —b)

1 [c_qg (x—a) _cos (z—b)].
= gin (@—b)

sin (z—a)  sin (z—b)J



70

INTEGRAL CALCULUS

. I= ___1 Scos (x—a) dm_Sooa (m — b) m]

sin (e —0) L} sin (z —a) sin (z—0b)

1 . .
=gin (a—b) [log sin (z —a)—1log sin (z—b)]

_ on sin (z—a),
sin (a—>b) ~ ° sin (x—{)

Ex. 7. Integrate S  lana dr, b > a.
Ja+b tan's

I=§ __ﬁ‘“ rdr S ., 8inzdr
,\/a. cos*x+h sin’zx Jb-—(b—a,) cos’x

1 sin r dz 1 s az

a0 Py e B

bh—

b
3 v — S S 2 [ —
[puttmp_., z=cos x: and % 0 a)]

= -- 1 -COS_lz'=‘/--——-GOq [ {-I:Q(OQ'B]

[ Sce Art. 2°3(E), Note ]

dx

Ex. 8. Integrate 344 cosh o

dx
T=| (o go = 4 £ (cosh T B s 34)
R - . A
7 cosh?3x+sinh*3x
S sech? 3¢
7+tanh* i'z:

( on multiplying the numorator and denominator by sech? §z.)

Put tanh ¢c=2; then % sech? 3z dr =d-z.

dz __ 2 - 2

S I=2 T2 T tan ~/7 'J,, tan-' (T}‘f tanh im)-
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EXAMPLES 1V

Integrate with respect to z the following functions :—

1. (i) cosec 2z.
(ii) cos®z.
(iv) sin®z.
(vi) sin®z cos®z.
(viii) sin®z cos®z.
(x) sin 2z cos®z.

(xii) sec?z cosec®z.

2. (i) cot®z. (ii) tan*z.

(iv) cosec*z. (v) cosec’z.

[ C. P. 1929 ]

(iii) sin*z.

(v) sin®z cos®z.
(vii) sin*z cos*z. #*
(ix) cos®z sin®z.
(xi) sin 3z cos®z.

(xiii) sin®z sec®z.

(iii) sec®z.

(vi) tan?z sec*z.

Evaluate the following integrals : -—

9]
5. () j cos 2z ;
Sin 2

(ll) j sm x

Jsin z cos®z dz.

-

. ..ar
) (sin z + cos z)*

(i )J'cqsﬂm

i) |

¥ Ccos &

—..——,

J Slnﬂ?

Cos

cos 2:1:
(vi)

[ dr__
sin®z cos’z

(i) )
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10.

11.

12.

13.

14

15.

16.

-

(i)

6]

INTEGRAL CALCULUS

... . Q=
3sinz—4 cos x

dz

) (8 sinz +4 cos z)*

dx.

dx

4 cos®z— 3cosa:

o e s

sIn” o

- 2 dm-
~ cosxa:

’_da:

sin 2 GOS 93

sm 2z dx .

(iii) J sin 5z sin 3z

[ Put sin?z+ cos’x in the numerator of (i) and (ii). ]

(i)

(i)

(i)

jsm ‘2 cos’z

(ii)

(ii)

(i)

(ii)

(iv)

(ii)

sin® z

) cos®z

F
___dm — =
) sin z cos®z

. de |
cosS 3r—Ccos T

dr
x cos*z

j sin*

[ Put tan =3 in (i) and (ii). ]

J tan x
dx.
sin x cos x

[ dz
) 4-5 sin’z

L,

(i)

(i)

-
cos £ —sin z
d:

N/ sin 2z

[ _dx |
J 1+cos“z
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. sin 22 az
17. (I)J vy i dz. (ii) J’hm 40 +cosz

sin“r+cosz

[ (i2) Write sin*x+cos*x=cos? 22 +3 sin? 22. ]

0.0 [ fTn e 0 [
19. j(l -:lc:):a:)z ac
20. (i) : 'i:cz:n T (i) J 1 +cos a c—c;é-—:'v' |

[ ('1,) Numerator=3{(sin x+ cos )+ (cos z—sin z)}. ]

(ii) ,\/cosec x—cobx __ sec r - de
cosec z +cot & Jl +9 sec T

sec »
22. Ja+btan z
[ dx
23. J a+btan x
o4, | .. da [C. P. 1933 ]
* Ja+d sin x o
25. () J.o+4sma: (1) J4+5 sin x
(i) 5 4+ 3 sinh z V' )] 4+4+8 cosh
A [ dz oo [ dx
26. (i) ) 5+4cos (i) ) 8+5cos
A [ dx . [ coszdz
27. (i) ) cos a+cos (if) ) 5-8cosz

73
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28.

29.

30.

31.

32.

33.

34.

36.

36.

L@

317.

38.

INTEGRAL CALCULUS

[ dx

J a* —b* cos®x

r~

_ _sinzdr
) Na® cos’r + b2 sin’x

sin 3¢ dr.
(@ +b cos r)*

[ &

F .
17 cos =16 sin x A
) Q2¢cosr+5sinx

O
l1-cosx+sinzx

(if) da :
3+2sin r+cos x

[ 6+8sina+14cosw
3+4sinx+5 cosz

L

r

Jl——-i-.secs_z dx [ Put N2 sin dr=2.]

r r

1 v dzx
— dz. ) | —2%—.
sec x + cosec ) sinx+tan x

@ |

.
(i) ) ( Jtan z+ Jeot ?z:) dr.  (ii) J eot T dz.

Put sin z—cos x=z and note 2 sin x cos x=1—(sin ¥ —cos x)?. ]

Vit e

x® dr
) (z sinz + cos z)?
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ANSWERS

1.(i) 4 log tan 2. (i) sin o~ 3 sin®z.  (iii) 3z —% sin 22+ % sin 4.
(iv) § cos®x~cos z—} cos’z. (v) 3x—4% sin 4x.
(vi) % sin*z~% sin®z. (vii) yiz [8Bz—sin 42 +} sin 8z).
(viii) § sin3z—} sin®z. (ix) 3 cos®z—% cos®z. (x) —3 cos’e.
(xi) §sin?z—7 sin*z+% sin®z. (xii) tan x —cot z.
(xiii) sec z —% sec’z+3 sec’z.

2.(i)) —3% cot’z—1log sin z. (ii) % tan’z—tan z+z. '
(iii) tan z(1+3% tan’z+ 3 tan‘z). (iv) —cot z—~§ cot®x.

(v) —% cot & cosce®z— § cot x cosec z+ § log tan §x.

(vi) tan®z (3+ 3 tan?z). 3. (i) log tan 3r+2 cos z.
(ii) 2 sin x—log (sec -+tan x).  (iii) % log (sec z+tan 7).
ey 1 1+ A2 sin o, T
(iv) W log 1— 2 sina (v) 3 tan3z+ 3 lan"z.
(vi) log tan 3z — 2z cosce . 4. (i) 5% Nsin g (7 sin z—8 sin®z).
] 1
'K 5 4 | PO . Y e .
(ii) 2 cot*x (3 tan*z+2 tan3z—3). 5. (i) & (i) = ~{fien
6. 1 log tan (3x—g tan~' 3). R S
© 3 " 3(3 tan x+4)
w1 o 1+ \2cosz N8+tan z
8. (i) 232 log §— N2 cos 2 (i) ; 2 J3 log N3—tan

9. (i) & log tan (37 +1) (ii) % tan z+ ; g ~/3 tan~'( &/2 tan 7).

10. % log tan (}r+2). 11. % log tan (}r+ 32).
12. (i) -4 cos%m+ﬁ cos’s ’Yc (ii) sec z+2 cos x —} cos’z.
18. (i) scc z+1log tan 3z. (ii) % tan?z+log tan .

(iii) % log sin 8z —3 log sin 5z.  (iv) # [cosec z— log (sec =+ tan z)].

14. (i) tan £ —2 cot ¢ — % cot’x. (ii) % (tan®z —cot®x)+ 8(tan = —cot z).

15. (i) 2 Nian 2 (i) log (cos z+sin z+ Wsin 2z).



76 INTEGRAL CALCULUS

o 1 2+ tan z ey 1 -1 tan z\
16. (i) g log 2—tan (i) N2 tan l( N2 )

. -1 2 33 _1 - (_!-- ).
17. (i) tan-*(tan3z). (ii) 9 tan—! i tan 2z

18. (i) 2 /1 —sin 2~ &2 log tan (3z+3m).

1

1+tan @ 19. 2 tan dx—2z.

(ii) =+
20. (i) % {z+1log (sin 2+ cos z)}. (ii) 2 cosec a tan~! (tan #a tan 3z).
21, (i) & {z+log (sin z+cos ).  (ii) P52+ 1% log (2 sin £+ 8 cos x).
(iii) sin~'(3 sec?3z).

_— e 1 on-1%).
22. Ja? b‘]ogtq.n(2+2tan b)

23. o -?-b"”H' ‘-Il-b"’ log (a cos z+b sin x).
2. 7, tan! {“5:"%’;1’} ifa>b;
g 18 (S e b e <
25. (i) % tan-' } (5 tan &x+4). (i) ; log g::g ;’::1
0 g T2 g e
26. (i) % tan~* (§ tan 32). (ii) % log (g"'::; gﬁ)
27, () cL. log ° g{;:g (ii) — e+ ¢ tan-" (2 tan 3a).

1

28, c'z:/_&?:b’ ta.n"( _— tan a-)s ifa > b;

Na? - X

1 jgemnes JETE L,
2a /b? ~a? a tan z+ /b3 =g na '
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29, — "‘;’L__j“"‘ log ( Wa®— 57 cos 2+ Ng? cos®x+b° sin’z),
ifa>b; - :fl_;"'}'—d:’i sin"( .‘ﬁ’.;;__.f"f cos :r)v if a < b.

‘30. —2b~2 log (a+b cos ) —2ab=? (a+b cos z)~".

31. 3 log (2 cos z+5 sin z)— 2. 32. (i) —log (1+cot §r).

(ii) tan-'(1+tan dx). 33. 2z+log (3+4 sin z+ 5 cos ).
;"

34. 2 sin~*( /2 sin %x).

-35. (i) % [sin 2 —cos :z;—-—‘\-l/‘j log tan (§z+37)].

(ii) % log tan 3z —% tan? 3z. 86. /2 sin-! (sin z—cos z).
37. cos a cos~*(cos x sec a) —sin a log (sin z+ Nsin?z —sinZa).

sin ¢—x cos T

38, x 8in ¢+ cos



CITAPTER V
RATIONAL FRACTIONS
[ Method of breaking up into partial fractions ]

5°'1. Integration of Rational Fractions.

When we have to integrate a rational fraction, say

¥
fdf( )) » if f(z) be not of a lower degree than ¢(z), we shall first

fx)

express <l>_( 2) by ordinary division in the form

Cp.’l:p+0p—1$p~1+"'+co '.U(’I‘)

#(z)

where Cpz? + eeee-e--: + C, is the quotient, and vw(z) is the
remainder and hence of lower degree than ¢(z).

p+1
Then f'( ) (Zw Gp seeee C r+ '/’(T)

() p+1’ ° 8(z)
So we shall now consider how to integrate that rational
v(r)

fraction #(2) in which the numerator is of a lower degree

than the denominator. The best way of effecting the
integration is first to decompose the fraction into a number
cf partial fractions and then to integrate each term
separately.

*Whon f(r) and ¢(zx) are algebraic expressions containing terms
involving positive integral powers of = only, of the form

Ao+ a, 2+ a8+ -+ anx™.
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We shall not enter here into a detailed discussion of the
theory of partial fractions for which the student is referred
to treatises on Higher Algebra, but we shall briefly indicate
the different methods adopted in breaking up a fraction into
partial fractions according to the nature of the factors of
the denominator of the fraction.

We know from the Theory of Equations that ¢(z) cgn
always be broken up into real factors which may be linear
or quadratic and some of which may be repeated.

Thus the general form of ¢(z) is
Alz - o)z — B)-+(z =) (@ — &) {lx — 1)* + m?}---

e — 1) + w5}

CaseI. When the demominator contains factors, reul,
linear, but none repeated.

To each non-repeated linear factor of the denominator,
such as = —a, there corresponds a partial fraction of the

form ;"_1-&' where A4 is a constant. The given fraction can

be expressed as a sum of fractions of this type and the
unknown constants A4’s can be determined easily as shown
by the following examples.

z?+zx—1

Ex. 1. Integrate S 5Tz’ — b2 dz. [P. P.1931]

2 +2? —6x=2 (x*+z—6)=x(x+8)(x—2).

2?+z—1 4 B C

Let  wr9w—-2"z to+rstz-2
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Multiplying both sides by «(z+ 3)(z—2), we get
z?+r-1=A4 (z+8)(x— 2)+ Bz (x—2)+ Cx (z+3).
Putting =0, —3, 2 successively on both sides, we get
4=%, B=}, C=1%.
the given integral is
I{de, 1\ dr  1( dzr
GS z 73 m+3+25 )
=% log z+% log (x+38)+% log (z—2).
ml
—a)(z—b)(x - c)
Here numerator is of the same degree as denominator and if
the numerator be divided by the denominator, tho fraction would be
of the form

Ex. 2. Iniegrate S(

1+ g » whore @ = (z —a)(z—b)(x ~c) and P of lower degree than Q. -

Hence, we can write
z? 1+ 42 4B C
(iz:-—a,).(m_—b)—(m--—c)—l-'—m—a z--b z—c (1)
z*=(x—a)lr—h)r—~c)+ 4 (z—D)z—c)
+ B (z—c)(z—a)+ C (x—a)(z—Db). (2)
Putting «=a, b, ¢ successively on both sides of the above
identity (2), we got
4=, & b? e
m—wm—d w—dw @ @—@M—M
from (1), it follows that the given integral
_a* [ dz b3 dm
S dot o= b)(a-—c) z—aT 0=c)b-a)
S dz_
(c a)(c - b)
a® 16 b3
"4 e % €0 Ggts=a 8

+(c—_—_aj(?' b) IOg ({B c)
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Case II. When the demominator contains factors, real,
linear, but some repeated.

To each p-fold linear factor, such as (x— a)? there will
correspond the sum of p partial fractions of the form
_.__.4-3—)- — -—4-”—_ 1 4 ...... __4_1'-— ’
@—af " @-apt T Tw-a)

where the constants Ap, Ap-,,...41 can be evaluated easil;;,,

+

2

o?

Ex. 8. Intcgrate S (x+1)? (z+9) ax.

@  _ A B, G
Lot 1) @ +9 " @+ T @+ D) T @+2)
Multiplying both sides by-(z+1)? (r+2), we get
22=A (x+2)+B (z+1)(x+2)+ C (x+1)3,

Putting z= —1, —2 successively, woget 4=1, C=4.

Again, equating cocfficients of 2 on Loth sides,

B+C=1; .. B= -3, since C=4.

. . _{ _dx _ dr_ dx
the given mtogml—-s (x+1)* 3 S-‘E+1+4S o+ 9

g 1 —-— -
== i1 3log (x+1)+4 log (z+ 2).
Note. The partial fractions in the above case can also be obtained

in the following way. Denote the first power of the repeated factor

s—1)2
i.e., x+1 by 2, then the fraction= ;1;-("-2 +-11)- - Now, divide Num. by

Denom. of the 2nd fraction after writing them in ascending powers
of z, till highest power of tho repeated factor, viz., 2?, appears in the

. 432 1 8 4
remainder. Thus the fraction= 515 (1-—3z+ i—_—f_-;) === + 15y Now

replace 3 by z+1, and the reqd. fractions are obtained.
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Case IIl. When the denominator contains factors, real,
quadratic, but none repeated.

To each mnon-repeated quadratic factor, such as

z®+px+gq, (or, 2° +q, g # 0), there corresponds a partial

Ar+ B

fraction of the form -4 -1 the method of integration
= +pxrt+q

of which is explained in Art. 2'5.

T
Ex. 4. Integrate S @E= 1)z F4) dx.

Let a y. | DBxz+C

-1 +4) "s=1F 2244
z=A (x?+4)+(Bx+ C)(z—1).
Putting z=1, on both sides, we get A=1.
Equating coefficients of z? and = on both sides, we get
A+B=0and C—D=1; hence B= -1, C=%.
the given integral becoincs

L{de_ 1fot g 1( d L (ssde, 4(dn
5yxz—1 5 )x?+4 5)x—1 10 )} 2%2+4 5 )Jzr?2+ 4
_192.

= 1 1y 1 2 2
-—5log(:c 1) 1olog(ac +4)+5t:m g

Ex. b. Integrate S (:v—”+_a,“{)%c"+b")' [ C. P. 1928, '31, 37 ]

1 = 1 [_ 1 ) —...__J'.___ .
(@ +a)(@*+b7) @’ -b® Le*+ b7 2 +a’
.. the given integra.l=a'ﬂ.__1___b_2 [ dz daz ]

il PO

_ .1 J1 2z _ 1 -1Z ],
_a"-—b"[btm b ata'nla]
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s
Ex. 6. Infegrale Sx +1

Since, a*+1=(z+1)(z?-z+1),

let us assume :,_ 1 :_c{i_i-l +;};"B-m-:c-f 1

1=4 (z? —2+1)+(Bx+C)(x+1).
Putting z= —1, we get 4=3.
Equating the cocfficients of ?, and the constant terms, we ha.vg

A+B=0and 4+C=1. .. B= -3}, C=4%.

the given integral becomes

1( de IS =2 o
3)e+1 8 —z+1
_IS _do S(Qw—])_ -3
T 8)z+l 6) x®—z+1
___1_8 de _1( 2x-1 dw_'_ls__dm__
" 8)z+1l 6)x*-z+1 2 ) x?—z+1

dx

(@—%)*+ (“2/2) i

= g‘-]og (x+1)— %log (@*—z+1)+ - tan"(--—-)

_1 _1 a_ L1
—3]og(a:+1) 6log(a: m+1)l—2§

2c—1
3 log(a:+1)-—log (z? —m+1)+-J3t ( 73 )
Case IV. When the denominator contains factors real,
quadratic, but some repeated.

In this case we shall require the use of Reduction
Formula to perform the integration, for the general dis-
cussion of which see Chap. VIII.
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Ex. 7. Integrate S(1+w’)“

Although this case comes under Case (IV), it can be treated more
simply as follows : Put z=tan 0.

I_____S sec’d do

secB S cos?0 db

=§ 3 (1+cos 26) do=4% (0+3 sin 26)

1 1 2tané
2 {0+ 7] 1+ta.n’0}

_1 -1 . T
——2{tan :c+1+ }

5°2. Two Special Cases.

(A) In many cases if the numerator and the denominator
of a given fraction contain even powers of x only, we can first
write the fraction in a simpler form by putting z for 22, and
then break it up into pariial [ractions involving z, i.e., z2,
and then integrate it. Thus,

2

7 +z7 2 W

Ex. 8. Integrate S

Putting x*>=32, wo have

____a:’ 2 4 , B
' Fx?—2 5 +z ) (z+2)(z—1) s+9 " g—1 %

2=A4 (z—-1)+ B (2+9).
Putting 2= —2 and 1 respectively, we get A=3%, B=3.

._.__.-.mf..._._ 3 _2 [ :!'.._.+ 1 . — ]_".__._.
zt+2*—-2 8 2*4+2 8 zx?~—1
_2\ dz__ 1 do

I=3) a2t 8) a2 -1

1

-1

1 .
=g/ BT et 3 2l°g
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(B) If in a fraction, the numerator comiains only odd
powers of x and the demominator only evem powers, then
it is found more convenient to change the variable first by
putting #* =z and then break it up into partial fractions as
usual. Thus,

z® dx
Ex. 9. Inicgrate S T+ 85549 g
Put =z .. 2odx=dz, .. z®dr=3%zd:.
7 15 sds
T2 ) 2243242

Now, ,. 2. . =,.-_2 _ - 4 + - -say
" 2%+ 3242 (2+1)z+2) z+1 z4+277°
We determinoe as usual 4= -1, B=2,

I= ; [2§£2_Séiz'l']= ; [2 log (3+ 2) —log (z+1)]

=log (z?+2) —4 log (x2+1).

9°8. Integral of the form

( dx _
Yx=-a)"(x~Db)"

where m and n are positive integers and a and b are unequal,
positive or negatlive.

Put z—a=2z(z-0).

Ex. 10. Inlegrate S (m-1);z(z-2)*-
Put 2z-1=3(z—2)
x=1-:—?i'- S ode= - A

1—-32 (1-2)
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Hence, the intogral transforms into

-(220)-eree (T2a)+2(25)- 2 (523)"
EXAMPLES V
Integrate the following :
L. (af“l_—;)l(i‘i"d) [ C.P. 1987 ]
2. : (w—_”;)’fz—-_ py [C.P.1923]
8. | (w(‘_'; 2)1(32‘1”’3) [C.P.1924]
4. (i)J tomray G )jigfgfb
N PR s
oL o[y
7. () _;m f 7;;? Y1 12 (i) Jg:‘:—;;&'—g d
8. (i) ; %5_’_3;: da G [ lG= a‘;;(g‘_‘; 52
8- ) .P(a: - a)g —dZ)G: -0 (i) :(5 - a()z;n(m -b)

— 3 —
S(_]._ 23)_‘12 Sl 3s+3z___s__d

= — -2— —8 log 2+ 3z —§32?
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6 | Gt

10. (i)

1.6 [
o

12.
13.
14.
15. (i)
16.

17,

18. (i)
19.

20. (i)

o [
) :

(i) F

|

o |

)& Faner +59

[ z? deo

)@+ e+

J@T-1)*

Jx=—1
Jl—m“
T dx

[ x2 da

Az
(®*+a)x +d)

J z dr
A +zX1+2%)

[y )

87

dr

(tv) j (z+1)*@+2)°

@ (832,

~ [ d

O A

o [ (@+1)de
@) J =1+ 2’
R ) [ (8 + 2) dz,

W plw+1)*
(3i) f * j , da.

[ d

(if) ) (z* -’l: 1)

(ii) J‘aggdfl

. r d
(i) j’(m“‘ +a2)(w£g +b%)

. de
6 J o ooy iy

(11) J —g— da:

@ |

x do

4 2

" - !
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[ dx
28. ) @®+42+5)%
[ 22 da
24. ) (2® +1)22%+1)
25. Jz(1 + 2 +2° +25)
[ dx
26. Jz*t+z2+1
[zt +2?+1=(z*+2+1)z?—2+1) ]
. d +1
27. (i) j i (i) j“’—-—-- dr.
[z*+1=(x?+2 N2+ 1) x2 -2 A/2+1) ]
a [ dz o [ dex
28. (1) ) cos z (5+ 8 cos z) (if) J sin 2z — sin z
A [ dx oy | e® dx
29. (1) J1+3865+2¢% (i1) J =38 +2
30 dz - [Putcosz=z] [ P.P. 19321
’ gin z (3 + 2 cos z) S

n
31. Show that J- g(—)' where ¢(z)= rI=Io (z + )

n![logw+ > (- 1)"'( )1og(w+fr)]

n1

32. Show thabJ’ f( ) dx

v (_ﬁf___

= —! ﬂ( ) log (m Gr)

where _;"(:::)Brl_,'_'I1 (x—ay), [ai £ apif ¢ £ & ]
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ANSWERS
1. 21log (z—38)—log (z—2).

2. 5"1“,‘) {a log (z—a)—Db log (z —1)}.

3. 8 log (x+2)+2log (z~3)}.

4. (i) #{7 log (x—17)—5 log (z —5)}. (ii) log {(x—2) (x+1)}.
5. 3log (z—1)—4 log (x—2)+ 2 log (x—3).
6.(i) §log (x—1)—2 log z—1¢ log (z+2). (ii) log (z* —1) —¥og =.
7. (i) 322 ~Tx—27 log (x +3)+64 log (x+4). (ii) z— —g log - ;
8. (i) 3 log {= («® —8)*}. (ii) —34 log (83—a)~—¢ log (3+2x).
9. (i a? 0*
. (i) (@—0)a—0) log (x — a,)+(b 6=a) log (z—10)
_.c - a ——
+(c ;a,)(c-—b) log (:C c).
. 1 1 T—0
(i) (b—a,)(:z:—a)-'-(b—a,)'3 log ct—a
ey Z—1 z—2 z—2 1{zx—-2\*
(i) g S8, _*+3 . 4 ﬂ(m-—l) ]
z+2 z+1 c+1 1 [z+1
(V) = ny—3108 4 o+3 15o~ 2(%-1—2)
10. (1) |~ +log (x+1). (ii) — 3 —4 log z+4 log (z+1).
. 1 1 z+1 oy 1 z
1. () —é_(_é:—l)-'- 4 log z—1 (i) .'z;+1+log z+1
1: z+1 1 =
12.6) ylog 571~ 5 ;a7
. 1 2 1 x-1
(1) 3 (;;c‘z'“m':i‘ 3 lo8 ws:z)'
z—2 1 z—1 . @ 4x+3
13.(3) 4{( 17 2 1g5+i}' i) 2log 25 +5 1)
2c+1 1 1-x

-] - = ce
14. () ,J3t e g T g 18 Ty ayas
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(ii) log (1—a)+ 33 tan-* 2‘”\;31
15. (i) H#log (x*—1)—log (2 +1)}. (ii) % log (2*—1)—1log =.

16. (i) }{log (1+2)—1log (1 —x)} 3% tan~'z.
i) 10g T 1oL an
(i) 41°gm+1 3 tan-‘z.

. 1 z*+b? L T -1 T,
17. (i) 9(a® -7 gm2+a (u) {ata.n a b tan bl

18. (i) 2'(&’1;_bﬁ) {a® log (z* +a?)—02 log (2 +b2)}.

(ii) +~——=— tan~' = +———’£—~ tan=* Z.
R X a?—b? b

___.'_1_____ a'+1) b -1‘”}
19, —— b,{ 8 foirg ot
20. (i) —% log (1+:c)+i log (1+2°)+3 tan~'z.

z—1 1 , 22+1

(i1) 3logA/ * b1 ’J3ta. NER

21, % [log (z? -1:+1)—Iog (x?+z+1)].
,J% _, T — -

22, (1)(7 ]og +o 7 tan-* 3 (ii) & Yog (£*—2)—~log (x?+1)}.

1 -1 z+2 }
23. 2{mn w+2)+ 212

25. log x—4% log (1+x)—% log (1+22)— % tan~'g.

1 1+2+2? 1 1(:z:.\/3)
4181 -+ 122 z.,/3tn 11—

4o ata’, 1 2 /2
2. (‘)442 log T exar T oo B (1 »c)
(ii) ;72 n-? 'sz

1=z%

24, tan~'z-— 2 fan-r (x n/2).

N2

26'

[
S

28. (i) } log tan (3r+4z)— % tan~? (3 tan 3z).

(ii) 8 log (1+cos z)+8 “g (1~cos )-8 log (1—2 cos z).
29. (i) z+1log (1+¢%)—2 log (1+2¢%). (ii) % log (e —1)(c*+ 8)°.
30. —3 log (1+cos )+ ys log (1 ~cos z)+ 2 log (842 cos x).



CHAPTER VI
DEFINITE INTEGRALS

6°1. Thus far we have defined integration as the inverse
of differentiation. Now, we shall define integra.tio?" as a
process of summation. In fact the integral caleculus was
invented in the attempt to calculate the aroa bounded by
curves by supposing the given area to be divided into an
infinite number of infinitesimal parts called elements,
the sum of all these elements hecing the area required.
Historically the integral sign is merelv the long S used by
early writers to denote the sum.

This new definition, as explained in the next article,
is of a fundamental importance, because it is used in most
of the applications of the integral calculus fto practical

problems,

6°2. Integration as the limit of a sum.

The generalised definition is given in Note 2 helow.
We first start with a special case of that definition which is
advantageous for application in most cases.

Let f(z) be a bounded™ single-valued continuous function
defined in the interval (a, b), a and b being both finite
quantities, and b > a ; and let the interval (a, b) be divided
into n equal sub-intervals each of length %, by the points

a+h, a+2h,..a+(n—1)h, so that nh=b—a ;

*$.e. which does not become infinite at _a.ny point. See Authors’
Differential Calculus.
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then :Jtoh [ f(a)+#a+h)+fa+2h)+ - +Ha+n-1h)]

n-1

i.e., shortly Lt th(a+rh) (nh=b—-a)

or, Lt _-q.‘lfa+(b—a);';)

n»c0 N

(*. w—> when h =>0)

is defined as the definile integral of f(z) with respect to x
between the limits a and b, and is denoted by the symbol

: flz) de.

‘a’ is called the lower or inferior limit, and D’ is called
the upper or superior limit.

Cor. Putting a=0, we get

b n-1
S fle)yde=Lt 7 = f(rh), where, nh=>b.
0 h-0 0

Note 1. S > f() dr is also sometimes dafined as
a

Lt 2. fla+rh), or, Lt h Z fla+2h) ;

h->0 r=1 >0 r=0
these definitions differ from one another only in the inclusion or
exclusion of the terms 2f(a) and hf(a+nh), i.e., hf(b) which ultimately
vanishes.

It should be carefully noted that whichever of these slightly
different forms of the definition we use, we always arrive at the same
result. Sometimes for the sake of simplicity we use one or other of
these definitions.

Bopposing the interval (a, b) to be divided into n equal parts each
of length Az by the poini zo(=a), &1, Taseeencesssens x,(=0), the definite

b n-1
integral S . f(z) dz may also be defined as Lt = f(x,) Ax.

n->00 r=(
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Note 2. The above dofinition of a definite integral is a special case
of the more generalised definition* as given below.

Lot f(z) bo a bounded function defined in the interval (a, b) ; and
let the interval (a, d) be divided in any manner into n sub-intervals
(equal or uncqual), of lengths &,, 8,,... 6,. In each sub-interval choose
a perfectly arbitrary point (which may be within or at either end-point
of the interval) ; and let these points be z=¢,, {,,... ¢

3

4

Lot S,=

i > 5, f(85). .f"

1

Now, Ict # increase indefinitely in such a way that the greatest of .
the lengths &,, 8.,... o, tends to zero. If in this case, S, tends to
a definite limit which is independent of the way in which the interval
(@, b) is sub-diveded and the intermediate points $,, $oy... $n are chosen,
thon this limit, when it exists, is called thoe definite integral of f(x)

from a to b.

It can bo shown that when f(r) is a continuous function, the above
limit always exrsts.
In the present volume however, in Art. 64, we prove that if

in addition to f(z) heing continuous in the interval, there exists
a4 function of which it is the differential econofficient, then the akove

limit exists.

In the definition of the Article above, for the sake of simplicity,
f(z) is taken to be a continuous function, the intervals are taken
10 be of equal lengihs, and {,, {.,... $u arc taken as the end-points of

the successive sub-intorvals.

The method of uncqual sub-divisions of the interval is illustrated

in Ex. 5 below.

b
Ex. 1. Evaluate from first principles s ¢’ dz. [C.P. 1922]
a

_— o ——

*For an altornative definition based on the concept of bounds, see

Appendix.
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>m the definition,

b n-1
S e*de=Lt h = e*“t™ where nh=b—a,
a h->0 r=0

=Lt h[e*+e 4 .cqettin-1i ]

h->0
=TIt h.e® [1+8h+eﬂh+".+6(n—1|h]
h->0
nh
=Lt a1
h->0 h-e ei—1

=g® (g% —1)- ’{3_5)0 —b’—lo since nh=b —a.

—_ eb — ",
i Lt AN
[smce, S0 o _1 1. ]
Ex. 2. Find from the definition, the value of
1
| o = an [ C. P.1935,'37 %

0

From the definition,
1 n
S s?*de=Lt n X (rh)? where nii=1
0 h-0 r=1
=Lt h[12R2+2%*K2+--++n?]?]
h->0

=Lt [h®1%42%2+---4+n?))
0

=Lt 3 n(n+1)(2n+1)

h-0 6
= if’-ﬁo [2n2h® + 30 R h+ nh.h?)
- é;f’io (2+8h+1?), since nh=1
- (1_5 9= 31. .
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1 1

b
Ex. 3 Prove ab initio S —1, de=""— - [ C. P 1943 ]
aZ a b

Here, by the definition,

Lt [1 1 1 1 ]
Sa x® dz= h (a,+h)’+(a.+2h)‘+ 1 (a,+rn,-—]_h,)'l ’
where nh=b—a.

Denoting the right-hand series by S, since, obviously,

1 . 1 o o __]_.___ o
(a+7rh)* 18 > (a+rh)a+r+1D0) and < (@a+r—1n)(a+rh)

1 1 1 ]
- e e — e

wo get § > 1 [a(a+h)+(a+h)(a+2h)+ (@ +n—1n)(a +nh) '

. 11 1 1 ( 11
M">[(a a,+h)+(a,+h a.+2h)+ + la+n—1n) (a+nh))]

) 1 1 ) 1 1 cent=t—nl,

1.6., > (a —a+1il-b) 1.8., > a b [ Juh=0b a]
1 1 1

also § < h [( -—h)a.+a(a+h) +(a.+n .:g'h)(a4-n—-1h)]'

: 1 1 (1 1 ) ( 1 1 )]
s - - -z V. I L |
. 1 1 . 11

w6y < (a—h (a+qi'1'-1h))' e < (d—h b—h)'

Hence ( - ) <8< (a-h —h)

and this being true for all values of h, procoeding to the limit when

1 1 1 1 .
h— 0, (a A Ii) clearly tends to (d - 3)' and S‘by definition

b
becomes S —-;’ and hence S dff= 1.1,
al a® a b

For an alternative mothod, see Ex. 5 ; here m= —2.
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X b . '
Ex. 4. Prove by summation, S sin 2 dxr=cos a—cos b.
a

b n-l
S sinzde=D0t 75 3 sin (a+7h), where nh=b—a,
a h->0 r=0

=Tt 1 [sin a+sin (a+ h)+sin (@ +24)+ -+« to n torms],

[;—)0
' ) h ] sin &nh
=Lt 1! } Sin gl
o h.sin {a,+(n 1) 2 | sin i%

2ot B i in oo ]
Lt o sinan 2 sin 3nh.sin{ a+(n—1) 9

It -if’k..[. ( _1 )_ { 1 7;,}]
w0 sin &5 LO°\? g ft) —cos a+(2n )2

0
— T — pu— - \. \ t ——— =
—hlto [cos (@ —%h) —cos (a+ nli—%h)] since aL 0 sin b 1

=TIt ) [cos (@ —37) —cos (b—3k)], since a+nh=Dh,
h->!

=c0S @~ cos b.

'.) L4 14 -
Ex. 5. Hraluale s x™ dx, where m is any nwumber, positive or
J @

negative, integer or fraction, but -1 (0 <a <b).

Lict us divide the interval (a, b) into u parts by points of division
1
a, ar, ar’,...... , ar™', ar” where ar"=b, i.e., r=(bla)".
1
Evidently as n —> oo, r=(b/a)" = 1, so that each of the intervals

a (r=1), ar (r—=1), ......... ,ar"~' (r—1) -~ 0. Now, by the genoralised
definition, as given in Note 2, Art. 6°2,

S : ™ do= fim [a™.a(r —1) + (ar)™.ar(r — 1)+ (ar®)".(ar?)(r — 1)
+ .-+ to n terms ]

=Lt1 a™1 (r—1) [14 ™1 43 mi . to n terms ]
r-
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=Lt mt 1. .(ﬂt-:.!‘. .
2.0 (r—1) o [m+1520]

. am-l-l r—1 {(ru)uu-x _1}

8" Ay

It _r—-1 m.“_{(b)mﬂ_ }
rJ-n e T a 1

=Lt "'—1 .(bm-l-l _a"l-i-l) N
r>1 r"ti—1 i

i1 [m#-1]

° '.Zt —,’L:]; 1] 1) 0—_—. t ——--»1 [ —-—]l—-
[ ’ 'r:bl gl —-1' being of the form 0 431 (m+1) r"‘= m+1
Note 1. Since g™ being continuous in (a, b) is integrable in (a, b),
a8 unique limit of the summation S, as given in Note 2, Art. 6°2,
exists ; so it is immaterial in what mode we calculate it. The same
remark holds for tho next example.

. b
Note 2. In cvaluating S 0 a™dx [m 5 —1, b > 0] we may first
b
ovaluate S 2" dr [0 < a < 6] as above, and then make ¢ = 0+4.
a
6.

Ex. Show from the definition

b 1 b
Sawdm-—loga (0<a<b)

As in Ex. 5, divide the interval (a, 1) into n parts by points of
division, a, ar, ar*,......... , ar*~t, ar”, where ar"=b i.e., r=(b/a)*!".
Evidently as n—>oo, r=(bla)!!" = 1, so that ocach of the intervals
a(r—1), ar (r—1)-++.ce=> 0. Now, by the generalised definition,

b 1 n 1
- =Lt y 3 " -_— -1
Sa G do=Ll 2 L. (art-art-)

Lt Z(r—-1)=Lt =n(r-1)

n->oo n->x
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=Lt n [(bJa)*!"—1]

n=>»0o00
h L4
=Lt <=1, 9] = L10g 2
- [ 7 log 2 I where 7 " log a
b -1
= - . .t t ———
log a [ " om0 A 1]

1
Ex. 7. Find ab initio the value of S ;ﬂ sec’z dx.

By definition, the required integral

n
I=ILt h X sec?® rh, where nh=3n.
h=>0 1r=1

Now, sec (r— 1) h sec 7h < sec’rl < sec rh sce (r+ 1)1,

since sec ¢ increases with z in 0 < ¢ < .

1 _sin {(r+1) h—sin rk}

Also, sec T4 sec (r+1) h= sin k  cos 71, cos (r+1) I

bl— {tan (»+1) k- tan 7k}

Similarly, sec (r—1) & sec rh

=--— {tan rh—tan (r—1) &}

sin I
Thus, I lies between Lé — o _ g {ta.n rh—tan (r—1) 1}
u h=0 sin h , r v
I
Lt " -
a:nd a0 SN To 4 E {tan (r-+1) A —tan ri}
i.e. - Lt L -
i.e., 2t sin h {tan nh—tan 0) and 4 sin ] {tan (n+1) i~ tan A}

Since nh=4%r, and Lf (h/sin k)=1 as 1, > 0, both the above limits
tend to tan 3w, d.e., 1

Hence, I has the value 1.
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b
6°3. Geometrical Interpretation of S f (x) dx.
a

Let the function f(z), which we suppose to be finite and
continuous in the interval (a, ), [ 5 > a ], be represented
graphically and let ¥ =f(x) he the equation of the continuous
curve PQ, and let AC, BD be two ordinates corresponding
to the points x =a, £ =5, meeting the curve at finite points.

Y /Q
D
A |
7 |“1 i
L
[
X' 0O A A 8 X
Yl
We have OA=a, OB=b and .. AB=b-a.

Let AB be divided into n equal parts each of length A.
. wh=b—-a, or, a+nh=b.
Let the ordinates be erected through the points whose
absciss® are a + h, a + 24,...... a+(n— 1) to meet the curve
at finite points,

Let us complete the set of inner rectangles ACC'4,......
and also the set of outer rectangles.
Let S denote the area enclosed between the curve
y=f(z), two ordinates z =a, =25, and the z-axis.
Let S, denote the sum of the inner rectangles.
8; < 8; [f(z) monotone increasing ]
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Now, S;=nhfla)+hfla+h)+-+hfla+n—1h)
= hté‘: fa +rh).
Let Sg denote the sum of the outer rectangles ;
S, > 8.

Now, Sz=hfla+h)+hfla+2h)+------ + hi(a + nh)

=] ”2:?: fla +7rh)— hf(a) + hf(b).

We have, S; < S < 8,.

Now, let the number of sub-divisions increase indefi-

nitely, and consequently the length of each of the sub-
intervals diminishes indefinitely.

Thus, as n—>, I = 0.

both hf(a) and hf(b) = 0, since f(a) and f(b) are

finife.
n—1 b
S; > Lt h3 fla+rh)=)| flz)de.
h->0 'r=0 J a
n-1 b
S, =>Lt h X flat+rn)=| flz)dex.
h->0 =0 J a

Since, we have always 8, < S < §,,

S S -S : f(x) dx.

b
Thus, j f(zx) dx geometrically represents the area of the

a
space enclosed by the curve y =f(x), the ordinates x=a, =",
and the x-axis.
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Note. The arguments here postulate a concave curve. Similar
arguments apply for a convex curve, or even for a curve which alter-
nately rises and falls in the interval.

6'4. Fundamental Theorem of Integral Calculus.

If f(x) is integrable in (a, ) [ a < b ], and if there exists
a function ¢(x), such that ¢'(x) =f(x) in (a, b), then

S : #(x) dx = 2i(b) - &(a).

Divide the interval (a, b) into » parts by taking inter-
mediate points,

(1:=mo<.’!'1<a‘g< ...... < mn=b.

Then we have, by the Mean Value Theorem of Differen-
tial Calculus,

¢(wr) - ¢(€lf'r—1) = (Tfr - -’177'—1) d>’(§r). [rroe < br <z ]

od)’(ér) 6r=X [d’(’l'r) - (a'fr— 1)]

MZE

[ where 6, =2y —2r_1 ]

= ¢(b) — ).
&Lto 3¢'(€r) 6, = ¢(b) — ¢(a), where 8 is the greatest of

the sub-intervals é,. Since f(x), and hence ¢'(x) is inte-
grable in (a, ), therefore,

Lt 566 = | " #'0) da= [ 1) o
50 R St a )

j';ﬂm) dz = $(8) — #(a).
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Note 1. The above theorem establishes a connection between the
integration as a particular kind of summation, and the integration as an
operation inverse to differentiation. This also establishes the existence
of the limit of the sum referred to in Art. 6'3, Note 2. For an alter-
native proof of the theorem see Appendix.

Note 2. From: the above theorem it is clear that the definile
integral is a funmction of its upper and lower limits and not of the
independent variable x.

Note 8. It should be noted!that if the upper limit is the indepen-
dent variable, the inlegral is not a definite integral but simply another
form of the indefinite integral. Thus, suppose [ f(z) dz=¢(z) ; then

S: f(@) da = dle) ~ pla) = ple) +a consta.nt=s f(z) da.

6'5. Evaluation of the Definite Integral.

By the help of the above theorem, the value of a definite
integral can be obtained much more easily than by the
tedious process of summation. The success in the evalua-
tion of a definite integral by this method mainly depends
upon the success in the evaluation of the corresponding
indefinite infegral, as will be seen from the following illus-
trative examples. The application of the above theorem
in the evaluation of the definite integral is very simple.

b
Suppose we require to evaluate J. flz) de.
a

First evaluate the indefinite integral [ flx) dx by the
. usual methods, and suppose the result is ¢(z).

Next substitute for x in ¢(x) first the upper limit and then
the lower limit, and subtract the last result from the first.

Thus, J : flx) de= ¢(b) — Hla).
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b
Now, ¢(b) — ¢(a) is very often shortly written as [qS(m)] .

It should be carefully noted that in a definite integral,
the arbitrary constant of integration does not appear.

For if we write [ f(z) dz=¢(z) + ¢ =y(x) say,
then | *7la) do=vl0) - via) = 40) + o () +

= $(b) — ¢(a).

Thus, while evaluating a definite integral, arbitrary cons-

tant need not be added in the value of the corresponding in-
definite integral.

Illustrative Examples.

b
Ex. 1. Evaluate S " dz.
a

i1

n —4 - [
S v dw—n+1

b n v— mn+1 h_ _1 [ n41 ‘ﬂ+1] .
Saw d:c—[n—+1 Wil b a i n+1#0.

o ¥

Ex. 2. Evaluate S cos*z dx. [C. U. 1936 ]

S cos?x dz= % S 2 cos’z de=4% S (14+cos 22) dx

=%z +% sin 2z.
w w
T 4 It 1. ]2’
Socos x dz [2m+4sm2w 0
1 1
--'41r+;sm-:r--4= .
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11—p
Ex. 8. Fvaluale e dx. [ C. U. 1937 ]

11—z , _ 2
Si_+:idw—5(f:a: l)dw

= 1 - = -
=2 Sl+m dx de—-zlog (1+a)—2.

1
I=[2 log (1+x)-—m]0=2 log 2—1—-2Tog L=21og 2-1.

¢ _dz_
Ex. 4. Evaluate S 0a®+ a7

S _ d_'”___r__ 1 tan~?! z,
a’+zx a a

I=[ 11;tx.n" g:]a = lta.n“‘ 1- 1 tan~' 0
a a a a

0
1. 7r_ 14 7
a 4 a 4q

Note. Two points should bo noted when evaluating a definite
integral for which the indefinito integral involves an inverse trigono-
metrical function.

(i) The result must never be expressed in degrees ; for the ordinary
rules for the differentiation and integration of trigonometrical functions
hold only when the angles arc measurod in radians.

(ii) In substituting the limits in the inverse functions, care should
be taken to choose the right values of the expressions obtained. Unless
otherwise mentioned, usually tho principal values are used.

6°6. Substitution in a Definite Integral.

While integrating an indefinite integral by the substi-
tution of a new variable, it 18 sometimes rather troublesome
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to transform the result back into the original variable. In
all such cases, while integrating the corresponding integral
between limits (¢.e., corresponding definite integral), we can
avoid the tedious process of restoring the original variable,
by changing the limits of the definite integral to correspond
with the change in the variable.

Therefore in a definite integral the substitution should
be effected in three places (i) in the integrand, (ii) m the
differential and (iii) in the limits.

The following illustrative examples show the procedure
to he employed.

Illustrative Examples.

swn "t

Ex. 1. Evaluates Jl-m dx.

1
t sin"tz=60. .. 0= - dr.
Pu sin~! g d 4\,/1—:112 dr

0 and 1 arc the limits of & ; the corresponding limits of 6 where
0 =sin~'x are found as follows :

When 2=0, #=sin~' 0=0.
When =1, 8 =sin"? 1=4m.
™

™
A\ 2 =[1p2]1%=1,a
Soo‘w_[zo]o g™ "

Note. Of courso this example can be worked out by first finding
the indefinite integral in terms of z and then substituting the
limits.
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Ex. 2. Evaluate S; Ja?—z? dz.

Put g=gq sin 6. .. dxr=a cos @ dé.

Also, when =0, #=0, and when z=a, 8 =§r.

3T
I=S 0 a® cos?9 do=a’ Szﬂ cos?0 do.

Now, S c03%0 dbf = iS (1+cos 20) 20 = % [0+ ; sin 20]-

I=a®- L [ 6+3 sin 20] b =}ra’.
2 0
Ex. 3. Evaluate S B Mz — a)(B —z) d. [ C. P. 1925, '32, '37 ]
[}
Put z=a cos?0+8sin%0. .. dr=2(8—a) sin 0 cos 0 df ;

also, x—a=8 sin®f —a (1—c0s%0) =(8—a) sin’*h.
B—z=pB (1—5in?8) ~a cos?0=(8—a) cos”d.
when g=a, (3—a) sin?0=0.
sin 6 =0. .. 8=0, since 8 # a.
Similarly, when =8, (8 —a) cos?0=0.
cos 0=0. .. 6=3m.

o

I=2(8—a)* S: sin?@ cos?@ dé.
Now, sin?0 cos?0 =%. 4 sin20 cos’0=1} sin?20=3} (1 —cos 40).
Also, S (1—cos 46) d0=26—} sin 4.

T 1 ™
. I=2 (ﬁ—a)’%sz (1—cos 40) d6 = 1 (ﬁ—a)"’-[o—- % sin 40](’;T

=% (8-a)? [§r—2 sin 27] =37 (8—a)®. .
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B dx
Ex. 4. Eo S Az
X Evaluate i N/(a:-a)(ﬁ-—:v)

(B>a)
As in Ex. 8, put z=a cos?0+ 8 sin?4g,.
]
I=S o 2d0=2.  w=m.

dx

3
Ex. 5. S (1—22%) ./1-
X Show that 0(i-22%) Ji—n

.=% leg (2+ W/3).
[C. P 1933 ]

Put z=sin 0. Then dr=cos # d0; also when =0, 6=0, and
when =%, 0=},

.y (3™ cos@de _(3r
TI= 0 cos 98 cos O-S 0 sec 20 d6
mw
=[z}_~ log tan (;}1r+0)]:
=3 [log tan 4w —log tan 3w ]=4 log (24 «/3).
v . 2
Ex. 6. Show that o sin®0 cos*0 d6=6;3- [C.P.1925]
Lel sin 0=x. '« cos 0 d0=dzx;

also when =0, x=0 and when =3m, z=1.

in . 1
I=S 0 8in®0 (1-sin2%0). cos @ d0=soa:° (1 -2?) dz
L RPN _[@.T]‘_[a‘_’]1=.1__1._2_
—Som dz Som =151 1lodo™ 7963

6°7. Series represented by Definite Integrals.

The definition of the definite integral as the limit of
a sum enables us to evaluate easily the limits of the sums
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of certain series, when the number of terms tends to infinity
by identifying them with some definite integrals. This is
illustrated by the following examples.

In identifying a series with a definite integral, it should
he noted that the definite integral

j flz) de=Lt hXfla+rl), when nh=>b- a,
a

h—>0

may be expressed as

e e

n>»>o00 N

- b
Xf ( -——) =\ flx) dz.
7 a
In the special case when a =0, b=1, we have .= 1/n.

FHence, in this ease, we have

Lt izf(£)=j;f(m) dx

1n->00

[ As if we write z for r/n and dz for 1/n. ]

1

or putting h=1/n, It h3f(rh) =j f(x) der.
h->0 0

[ As if we write z for »I: and dx for 7. ]

It { I 1 s, 1 }
Ex. 1. Eraluale n+1+n+2+ +

Dividing the numerator and denominator of each term of the above
serics by m, the given serics becomes

1 1 1
=Lt nl ; 1&2 L
n->o00 (1+ 142 __.1+ m
n n .
1 = 1 n 1 .
=Lt . —-It 1 [ ) _ ]
n->00 N ¢2=:1 v+ T hl—>o h -r-E;-l 1%7h putting h "

1 1 1
So l:l;—dx [log (1+a;)]0 =log 2.
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Ex. 2. Evaluale
e 4 6 W2
It { 1 )n‘-'( _2__)7;‘-'( 3 )n“_" g’_a_)n"}.
nroo (1+n” 1457 14 1+.3
Let 4 denote the given expression ; then
n o r?
]og A_=’r2‘=1 ',Z"-]Og (1+ng).
2
oo Lt log A=t 1 '5 2rlog(1+r—2) o
n->00 u~>o0o i r=1 n n
] L)
280 2x log (L4-x%) dx
2
=Sl log =z d=. [ putting 1+ %=z ]
2 4
=[z log z—-z]l=".’. log 2—-1=log ¢
. 4
Since, log Lt A=Ll log .d=log s
Nn->09 n->oa ¢
oo Td A ge., the limit= 4,
n->20 ¢
) o IR Skt S Mt TR +n™_ _
Ex. 3. Prove lhat —— e nt1 [ > —1].

Left side

~Ii !_[(1 )+(2)+ ...... +(1';) J
n->oc 1L\ 1 n 2

m
=7t b3 (!)m==LL' Ly ('rh) [wherc h=:b]
1

nsco N\ 0 h=>0 ¢
1 mm+ 1 1
—— an = .
= S 0 a™ do ['ln T1lo

= —14 .
m<+1



110 INTEGRAL CALCULUS
EXAMPLES VI(A)

1. Find by the method of summation the vaiues of :—

b b
(1) j e " de. (ii) J. & dz,
a a
1 1
(iii) J'Ow3 dzx. (iv) o(aa: +2) dz.
g . b
(v) j-o sin z dz. (vi) | cos 0 d6.
o (1 i o (41
(vii) jo N dx. (viii) _L J de.
a i
(ix) josin nx da. (x) L cosec®z dr.

Tivaluate the following integrals (Ez. 2 to Ex. 12) :—

o

1 - _ 2 -
2. (i) Jo z? 1+ 3x* dx. (i1) o 2ax — 22 dx.
o/
(i) j"“ . dx (iv) [t dx
W), (1 +1og z)? Jo(x®+1)?
1
3. Jo xe” dx. [C. P. 1936 ]
1 F1
4. (i) jo gin" 'z dz. (i1) ] tan"*z dx.
) . ) |
(iii) so (cos™z)? de. (iv) o T log (1 + 2z) dz.
1 r1
) jo dban'a)f ds. (i) | o Jl4-") ao.
o
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T
5. (i) Jo sin mz sin nx dz. [C. P. 1937 ]
T
(ii) j‘o cos mx cos nx dx. ( m, n being integers )

dw
(i11) 5 . sin z sin 22 de. {C. P. 1940

6. (i) jo sin’nz de. (ii) J‘o cos?nz dzx.

( 1 being an integer )

A (1 _xdr o [ de
7.0) jo N1+ 2® ) Jo (43 442)8
(iii) Ja dr (iv) (5 de_
0 Aax -z Je Mz-1)5-2)
b 1 ir
8. (i) j . z sin z dz. (ii) j , e dzx.

i
(3i1) 5 . (sec 6 — tan 0) do.

i [ in
0

9. (i) 54 tan = dx. (1i) . tan?z dz.

Fi"

aw
10. (i) j , ©os 9z cos 3z dz. (i) ] sin?xz cos®z dz.

i K
(iii) J , & cos @ cos 3z dz. (iv) . sec®d do.

o

111
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Ne &
11. (i) J Lz log = dz. (i) J‘o 22 sin z dzx.

Y4
(iii) J.o sin ¢ cos ¢ /(a® sin®? ¢ +b2 cos? $)de.

12. () J 2+:1: (id) J (1 +2m)2

U L dar A
(iii) oa,+bcosw(a'>b>0)'

[ dx
Jo 1-2a cos:r+a,""(0 <a<1)

(iv)

Show that :-—
i log 9 Gm [

13. ) o iwe  dr = log:,2

.
14. 1—‘?; Z =1 1og(' ) log (ab).

J G

fa . 9
15. gin™t_ ~

. 1+ dt =2a tan *a —log (1 +a?).

16. (i) Jf Mz — 12 - x) da = =

dx 5
(i1) j s (w-3)Jzr1 Tl

[ 3 sinzdr = -1
= + tan T
Jo 1+cos’zx 4 ' N2

Pi“ 4 32
19. o cos®z %/gin x dz=§%.
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. i _____c_i,a_:_ o T
20. (i jo a® cos’z + b7 sin’z  2ab @07 0l

) j’ sin’z cos®z . 1
o (sin®z + cos®z)? 6
21. (I)J 4+5 sin T—‘}log 2.

(ii) Ji"- - dm' - =% tan"? §.

0 D+4sinx

R -1
22. (])JO 5+3cosa: =%tan™" %

de 4 :
(ll)jo 3+Ocosw—4log 3.

(ifi) Jo 1 +4 cot'.2 ~ 6

dr ___0_.

23. Jo 1+cos6 cosz sin 6

24. :i: (1+51‘;0?1:)a("‘7df sin ) =log 5.

25. :i: sin S;rfl-zca;s z 9= z

26. (;) Jo it oot sy = AV (a0

[ Multiply num. and denom. by secx ; then put b tan x=a tan 0 ]

x sm__ag_cos *
(i) Jo (@? cos’z +b? sin’z)? do= 4a.b’( +b) lad > 0]

ef1 1 } _._.2
27. j 2 {loga: (log z)® de=e log 2
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28. (I)JS!(w 1)~/a: — o 13‘

(11) j d.'l! n .
o(1+a) J1+ 92—z 4.2
29. Evaluate the following :(—

: i, 1 ... .-1..-_].
(l)goo[n+m+ +2m+ +n+mn.

s n n n
(i) Lt ['n.2 +12 + n* +9°% + +nz +11,2]

n->00

1 I ST TR |
(i) Lt [Jn2—12+ Jn2-git T Jﬁz—(n—l)z]

. 1 1 1
) FRSRSERNNE]
W) Lt | Jan=12 Tam-22" "t m

[ Write n= N2n? — n? in the last term ]

17 92 n®
(v) Lt [ Tt rge ...+.2;§].

. 1 2 2 1
(vi) f.fm[ ot Tttt "‘+éﬁ]'

(vii) L¢ [713 RN, et SN, bl (2 1)_”].

7->00 n

n-1
(viii) Zt = 1 (n gt}
n—r

n>o00 r=1 N

w0z {1 2 )
0 2 {{ue3)oe -3
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n
(xi) It = ntr

n>oo r=1M0 n?+r®

(xii) ﬂm = ) J{r(21z +r)b

(xiii) Lt [l M S B 1].

nt+l n+2 3n

n—-»>oo

- 1 I S N §
(xiv) ’ﬁtm n[1+ ~/2+ + ~/%]

(zxv) Lt [‘\_/_("'"'1) + W+ )+ + /2]

N

n->00

1/n
(xvi) It [Z,I] .

n~->»oQ

30. If Ja o dx =J*" sin Ozdo_

0 Ne+at Nz 0o cos?@

find the value of a.

115

31. If a be positive and the positive value of the square

root is taken, show that

+1
j d= 21 a<1;

1 /(1 %az +a2)

2ifa>1.
a

32.
iw
(1) j sin m2 sin ne dz ={

(i) j' sin mz cos nz dz=0.
-7

+
(iii) J COS M COS NI dw={
-7

If m and n are positive integers, show that

O ifm # n
x if m = n.

O it m = n
ﬁ'ifm=n-
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ANSWERS

1. (i) (e-2—e7d). (ii) (e*®—e*?)/x. (iii) 2. (iv) 2a+d.
(v) 1. (vi) sin b—sin a. (vii) 3. (viii) 2.
(ix) (1 —cos na)/n. (x) 1.

2. (i) v%. (ii) dwa’. (iii) 3. (iv) & (r+2).

3. 1. 4. (i) 3r—1. (i) 3r—3log2. (i) 7—2.  (iv) & log 3.
(v) 3r (fr—1)+3 log 2. (vi) 37—% A/B.

5. (i) “‘28:::;’3 ?'--Si‘-; g"’:_t:)) . (ii) o. (iii) §.

8. () 3v.  Gi) 3w 7.() v2—1.  (ii) a,1~,2- (iii) .

Giv) #v. 8.() 1. (i) log (V2+1). (iii) log 2. 9. (i) & log 2.

(ii) 1- 2. 10. (i) 2. (i) &. (i) Yg (=—9). (iv) .
11. (i) 1. (i) w—2. (iii) g-“";‘_‘f;' b2,
12. (i) L . (ii) log ¢ —1.
(iii) ——:\/—d“l-—"b" cos™* (z) (iv) lfa? 29. (i) lﬁ log (1+m).
(ii) . (iii) & (iv) 3. (v) & log 2. (vi) 2.
(vii) 3. (viii) 3+ 1. (ix) 4/e.
(x) 268(7 -4, (xi) 7+ -; log2  (xii) 3r.  (xiii) log. 3.

(xiv) 2. (xv) % 214 (xvi) 2. 30. .

r
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6°8. General Properties of Detinite Integrals.

b b
@) S.f(x) dxuS. f(z) da.

Let (f)do=s): . [ ) do=al)- oe)

| e dz= gt - o).

o

then, JP f(2) dz=¢(2) ;
(ii) S: f(x) dx= - g: f(x) dx.

b
Let [f)do=ge): | ) damg(0) - e,

and — j: f(z) dz = —[$(a) — $(0)] = $(b) — $(a).

Thus, an interchange of limits changes the sign of the
integral.

b 0 b
(iii) Sa f(x) dx= Sa f(x) dx+ S 1(x) dx. (a <c <b).

Let J flz) de = ¢(z) ; c. J- Z flx) dz = ¢(b) — $(a).

Right side ={¢(c)— $(a)} +{s(b) - (o)t = 4(b) — ¢(a)-

Generalisation.

j:f(m) i = z) dx+j:’ o) dz+ -

+f f(:«:)dﬂjf 1) da

J fney

Whena<01<02< """ <0n<b.
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a a
(iv) S ] f(x) dx = S ) f(a—-x) dx.

Proof. Puta—z=z2, C.ode=—dz;

also when 2=0, z=a, and when z=a, z=0.
0 a a
right side= —J 1(2) dz=s . f(2) dz =J . flx) de.
a

™

™w mw
Tllustration : j g sin & dx =J sin("ér —:r) da ==J' g cos 2 dzx.

0

(v) S n: f(x) dx=n S : f(x) dx, if fz)=f(a + ).

Proof.
na a 2a na
j . f(z) dw=j'o flz) dm+J ] flx) dec + - +J( fz) der.

n-1lla
Put z+ a=z, then, dz=dz,

also when z=a, 2=0, and when =2, z=a ;

J’2: flz) da:=J.:f(z+a) dz==J:f(a+w) dz

b
=J f(x) dz.
Similarly, it can be shown that

j:: fle) dm=j2: fiz) dm=5:f(m) de ;

and so on. Thus, earh of the integrals on the right side

can be shown to be equal to J’: f(z) dz. Hence, the result.
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Illustration :

Since, sin®z=sin® (r+z), .°. S ‘O’r sin®z de=4 S z sin®z dz.
2a a a
(vi) S ] f(x) dx= So f(x) dx+ S. f(2a - x) dx.

% a %a
Proof. j . f(z) da:=j . flz) dm+5 . flz) de.
[ By (4i1) ]
Put 2 =2a — 2z in the 2nd integral ; then, dz = — dz, "
also when z=a, z=a ; and when 2=2a, z=0.

the second integral on the right side viz.
‘[2: flz) de= -j : f(2a - 2) dz-j: f(%a-2)dz
[ By () ]
=Jof(2a-:r) da. [ By ()]
Hence the result.

(vii) S’“ () dx =2 Sn 0x) dx, if f(%a - 2)=1(z),

2a
and Su f(x) dx =0, if (2 — z)= —f(z).
These two results follow immediately from (vi).

Tlustration :
Since, sin (r —z)=sin x, and cos (r—z)= —cos x,

w

(7 . L I g
. Sosmmdz=2so sm:cda:;a.ndso cos  dz=0,

mw
and generally S :f (sin z) da =2 S: S (sin z) dx,

and S : f(cos ¢) de=0, if f(cos z) is an odd function of cos z.
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(viii) S : f(x) dx = S : {1(x)+1( - x)} dx.

Proof. j i: flz) dz = J O_a flz) dz + J:a fz) de.
Now, putting z = — 2,

0 0 [ a
j_af(w)dm=— J-af(—z)dz= ) 0f(---z) dz

=1 f(—2) d.

J o0

Hence, the result follows.

Cor. If f(r) is an odd function of x i.e., f(—x)= —f(z), .
s- 2 1(x) dx=0,
-a
and if f(a) is an even function of z i.c., fi—.r)=f(z),

S “_L: f (x) dx=2 S: 1 (x) dx.

Illustration :

P+:g'_ . .

sinz dx=0, and

J I
g
w

[+

T L A

sin®x dr=2 S sinéx dx.
- 0
J =

. 6°9. Illustrative Examples.

By the help of the above properties of definite integrals
we can evaluate many definite integrals without evaluating
the corresponding indefinite integrals, as shown in the
following examples.
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T

Ex. 1. Show that Sg log tan © de=0,

™
1=S’g Jog tan (g -—a;) de [ By (iv), Art. 68

mw T
=S: log cot & dx = -—S: log tan » dr= —1.

2I=0; I=0. -
mw _——
g »Jsm x T
. 2. Show that S . e T 2 A
roto i 0 &fsin z+ aJcos ‘ 4
. (T
71!'_ JSln ( 2 “17)
I= S‘a e — d.r
0 . ' 4 + T
sin | 5 — 2 cos |, —=
r )=
=S§ Aeoso o
0 afcos az+ A/sinz
7 Asin z 7 Ncos z
2I= ‘_.:‘*_' - ) — - dw+ T e - I-T———
0 Nfsinz+ aJcos 0 \J/cos x4 \/sin z

- —

7 Jsinz+ Jeos " 3
=§? Sin a1 JJeohg w.:Sfdx:[m]%gm
0 A/sinx+ aJcos w 0 0

I=}mn.

™

Ex. 8. Slow that S? log sin x dx=§ 1

E.

© w3

log cos x dx= 12". log

ki ki

Sf log sin z da:=§-g log sin (; —w) dx

™

= S:_ log cos = da.

[ By Art. 6'8, (iv) ]
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2I= log sin x dz+s log cos z dx

T

S (log sin 2+ log cos x) da:-—s log (sin x cos z) da
2 m

Sog sm :c) dz= S:_ (log sin 22 —1log 2) dx

T
S log sin 2x dx— -2 log 2.

Put 2z=2z; .. dr=3da.
w

Sy log sin 2z dx= J-Sﬂlo« sin 2 dz
0 g 4 2 Yo ©8

T

= ; S: log sin dr=s-§ log sin x de=1 [ By (i), Art: 6'8]

1
2I=I—glog2; I=—;r]og2=;log2--

log (1+x)
Ex. 4. Show that SO 1 z? dr =g log 2.

Put a=tan 0; .". dr=scc?@ d8 ; also when =0, §=0;

and when z=1, 0=3r.
im in
e I=§o log (1+ tan 0) d0=§0 log {1+ tan (}r—0)} d6.

[ By Art. 6°8, (iv) ]

l—tanf_ 2
l+tan § 1-+tan

™ .
Now, 1+ta.n(4--0)—1 rk

. _(irm 2 _(ir _
- I—So log 1+tan8d0"So {log 2—1log (1-+tan O)} 4

=§:" log 2 40— Sz" log (1+tan 6) df =}r. log 2—1I.

s QI=3r.log2; .. I= ’eflog 2.
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aa:e

g 1437 dz=0.

Ex. 5. Show that S

I= S—al'l' -~ dz +S:1a:_e—m,-da:=11+1, say.

Putting 2= — 2, in the first integral,

0 g a ze* a ge®’ |
I, S i4s0 9 Sor+;id’-*sop;z=dm— L.

Y

Hence the resnlt.
6°10. Two Important Definite Integrals.
A. If n be a positive integer,*

g &
So sin"x deo cos"x dx

n-1n-3n-5 3 1=

n n-2n-4 4 2 2
or =N=1n-3n-5 | ;4.2_1

n n-2n-4 ° 3

according as n 1s even or odd.

Proof. [sin"x dz=[sin" *z.sin ¢ dr
=gin" *2.(— cos ) + (n— 1) [sin™ "%z cos’®z dz
(integrating by parts)
= —-gin" "'z cos £ +(n —1) [sin® %z (1 - sin’z) dz
= —gin" 'z cos 2z +(n—1) [sin™ %z dx— (n—1) [sin"2z dz.
transposing —(n— 1) [sin™z dz to the left side and
dividing by 7, we have

jsin"’m dx= — sin” "Iz coB & (n - DJ n-2

z dz. < (1)

sin

* For other forms of these integrals see § 88.
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Ar s n—1 & - i
. i sin” “x cos T n—1 . me

j sin"z dz = [-— ] + ————j sin™ %2 dz
0 n 0 n Jo

w—1 [ _ __
= J. sin®" %z dzx.
n 0

Cawr
Hence, denoting Jo sin"2 dz by In, we have

n—-1
In= n In-z, e ces ene (2)
Changing = into n—2, n—4, ete. successively, we have
from (2),
n—3 w—5
y P =n _ ‘2 In_s; In-s =n’_‘_'4 In_g, ete.
_n=1n=-3n=-56__ 3.1
T n n—2nu—4 4 210
. oP-lmz3w=b 4.8
’ n n—92 n—4 5 3 1
according as 7 1s even or odd.
Pi”
But [0 = (Z:)}' = %ﬂ
(4 4
and I,= sm:rd:r-“—[—cosm] =1,
Jo 0

i
Thus, we get the required value of Jo sin"z dex.

ir
Exactly in the same way it can be shown tha.tj o cos"z dx

has precisely the same value as the above integral in either
case, n being even or odd.
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Otherwise, it can be shown thus :
i 3w T
_"0 cos”z dx =L cos” (3n— 1) dx '-'-"L sin™z du.

Note. Tho student can casily detect the law of formation of the
factors in the above formulwe, noting that when the index is even,
an additional faclor §7 is written at the end but when the index is odd,
no factor involving = is introduced. The formule (1) and (2) above are
called Reductigp_ﬂ}iorrquke. [ See Chap. VIIL. ]

e

»

i L
B. SO sin™x cos"x dx, m, n being positive integers.”

J sin™z cos"z dx =J cos" *z.(sin™x cos z) dr

o m1
n—1_ SN n-—1 n—-0 . . m
=¢os &L -—— + cos” “wsinz sin” 'x dr
m+1 m+1
sin™* g
[integratmg by parts and noting | sin™r cos 2 dz = m _l_—l-'—']
= .m+1 n-1 i
sin” "z cos” x, n—1 . 2 "n—2
= + = | sin™2(1 - cos®x) cos" "z dz
m+1 m+1 ( )
. m+1 n—1 i
Sin xcos r, n—1 . -
= - S 4 | sin™z cos™ x dir
m+1 m+1 ]
n=11 . n n
- — | sin™z cos"x dx.
m+1j
. . eqe m+n
Hence, transposing and dividing by m+1 We have
[ sin™z cos™z dx
s omt1 n—1
8in x cos” 2, n—1 . -
=S ST J sin™z cos" *z dz. - (1)
m+n m+n

" *Soe Chap. VIII, Art. 815,
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& :m+1 n—-1,1%r

) sin™" 'z cos”" 'z

sin™x cos"z dz ———[ S - ————-“]
m+n 0

n—1 (¥ . -
+ o J sin™z cos™ 2z dx
m+n]o

n—1 [ -
“mtn j 0 sin™z cos™ 2z dz. (2)

Again, writting [sin™z cos™z dz = [sin™ 'z (cos™z sin )dx
and integrating by parts and proceeding as above, we get
s . Mm—1 n+1
. sin™ " cos™
j gin™z cos"z dp= — — —"—-- - °
m+n
n” — 1 c -2 n
+ sin™ ™ *a cos"z dx
m+n

and hence taking it between the limits 0 and iz, we get

3w - i
j‘ sin™z cos™z dx="" IJ’ sin™ %z cos"z dz. -+ (3)

m+n o
ir
Thus, denoting Jo sin™x cos™x dx by Im,n, wWe have
from (2) and (8),
Imn= ;ln-;ln Im,n-2
m-1
= Im-!. n

~-n

AT
Again, since, jo sin™z cos™r dx

r iqr

R sin™ (4= — z) cos® (}n - z) dz
[ iﬂ' N m )

: sin™z cos™zx dz,

w

Im, n= In. m.
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By means of the formul® (2) and (8), either index can
be reduced by 2, and by repetitions of this process we can,
since m and » are positive integers, make the original
integral v¢z., Im, n depend upon one in which the indices are
1 or 0. The result, therefore, finally involves one or other
of the following integrals :

[ & [ A -

gin z cos z dx=1% ; dr="_ ;
KL [ &

sin z dzx=1; coszx dr=1 ;
J o JO

Thus, finally we have,
& AT
So sin™x cos"x dx = So cos™x sin”x dx

_135..(m-1).1.85...(n-1)
2.4.6...... (m+n)

when both . and n are even integers ; and

R
E!

when one of the two indices, say m, 18 an odd integer.

Note. The above definite integrals are of great use in the appli-
cation of Integral Calculus to practical problems ; e.g., in the determina-
tion of centre of gravity, in the calculation of area, etc.; and also
many elemcntary definite integrals on suitable substitution reduce to
one or other of the above forms, as shown in the following examples.

6°'11. [Illustrative Examples.

1
Ex. 1. Evaluate S 0 z® J(1—2?) dz. -

Put z=sing@; .". dr=cos 0 df and 1—-2?=co0s?9 ;
also when =0, §=0, and whenz=1, 0 =4r.

The given integral then reduces to

1.3.5,

r . . 2 _1.3.5.1 = _ 57
SO s8in®0 cos 0d0_2.4.6.8

25

1o 3
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1
Ex. 2. ZEvaluate S z2 (l—m)‘g dz.

0
Put x=s8in?d; .°. de=2 sin 6 cos @ dé

and when =0, 1, we have =0, 37 respectivoly.

R & & 2.4 16

C. I=2 S o sin’@ cos*8 df=2 5.7.97 815
T

Ex. 3. Efr;a,luates 0 ens™x dzx.

Since cos"x= —cos™ (r—1r), when » is odd,

and =cos™ (v —a), when #n is even,

by Art. 6°8 (vii), it follows that 7=0, when 2 is odd,
2w
and 7=92 S 0 cos"r dxr, when n is cven

- [ By Art. 6'10(4) ]

= 0. ® - e
od

n-—_-;[.'n -3 n—5 . 3_1.
n n—2 n~4 2

T
2

EXAMPLES VI(B)
Show that :—
b b
1. ) j Aa+b-2) (Za:==J- @) der.
a a

(ii) j :: ez +¢) do = J' : Az) de.
(iif) j ' fna)dz=2 ™ f2) do.

im sin 7
. = T-— dg= -
2 j 0 sinz+tcos 4

8 gos z—sin ¢
8. j.ol+sina:cosmdw 0.
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11.

12,

13.

14.

15.

16.
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~

o

-
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§r
. (@ cos®z+b sin’z) dz =%x (a + b).

[ &

o sin 2z log tan z dz =0.

" zf(sin z) dz =43 J " f(sin z) de.
0 0

w
N log sin z dx = %a® log 3.

T . 2 T
owsmmcos wda:=3-

™
z sin’z dz =1=>.

.~ ﬂ -
s 4T o0,

0 sinx

+a _- .
z AJa?—-z? dz=0.
a

2w
sin® iz cos® 3z dx=0.

1
. log sin (3n6) d6=1log . [Putiro=z]

S 1

1
_logz dx = - log a9 [ Put z=sin 0]

o J1-2? 2

|
: log (1 + tan 6) do = 8 log 2.

T . =_3, 2
owcos z dx 6% -

129
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3
17. (i) J' : coslz dr= 5 7

32
o (7 . o 128
(i1) Jo sin mdm-315-
[ & Tn
ems . 4n 8 —_ - .
(iii) ], sin®@ cos 0 do 9048

(iv) (& 5 8
1v o sin“x cos mdm—315

(v) j: (1 — cos x)*® dm-%’

™
(vi) J o sin®*z cos®*z dx=0.
T
(vii) J o cos’0 d6=0.
+F .
(viii) j _sin"x dz=0.
]

1
. 3 (1 _ .33 _ 1
18. (i) J x® (1 —a)° dr 140

(11)J- 3 (l—w?‘)_zda:—63

P'a w*

o 0 Ja —:w
(iv) (! = Cdr _ 5
0 ~/1 —22 327
19. | e _3es
A Te O(__z "2.‘12+2)3 39

3
2 (Ilm _ a4.

16

iii)

[Putxc=1+tan 0}

.  sin x 7T
20. (I)J. 1 + cos® :cdm 4

(ii) J sin’z de ~/2 log ( /2 + 1).

0o sinxz+cos x
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oy |7 T tan o _ _
(1i) Jo sec z +tan @ dz=1%n (n—2).

.y (7 _mdz_ _ 2
(IV) 0 1 +0082m _2 Jz [ G- P. 1952 ]
z dr
(V) Jo sec a:+coseca: {1 +log ( “/2 1)}
(vi) J cot~ (L —z+ %) de=3%r—log 2.
e

xdr S - i

(vii) Joa sin®z+ b2 cos’z (6, 0>0) Qab

rdz
(viii) J' 1+cos 2z +sin 2z 16 log 2.

(ix) j G(T(;wz -q’ ;)f °)? de = J2 log (/2 + 1).

( ) j b d’r n(a +bz)

0 (a2cos?z + b2sin®x)? 4a%b®

21. If 7,.= Jo tan™6 d6, show that I, = - Tpea.

-1
i
Hence, find the value of J . tan’z daz.

22. Show that, if m and » are positive and m is integral,

1 1
_"o 2"t (1 -g)™ da:=jo 2™ (1-2)" t da

_1.98.........m—1)
n(n+1)......... mn+m-1)
ANSWERS

Is""i"‘



CHAPTER VII

INFINITE (OR TMPROPER) INTEGRALS AND
INTEGRATION OF INFINITE SERIES

7°1. Infinite Integrals.

In discussing definite integrals we have hitherto
supposed that the range of integration is finite and the
infegrand is confinuous in the range. If in an integral,
either the range is infinite, or the infegrand has an
infinite discontinuity in the range (i.e., the integrand tends
to infinity at some points of the range), the integral is
usually called an Infinite Integral, and by some writers,
an Improper Integral. Simple cases of infinite infegrals
occur in elementary problems ; for example, in the problem
of finding the area between a plane curve and its asymptote.
We give below the definitions of infinite integrals in

different cases.

(A) Infinite range.
(i) J’m flxr) dz s defined as £tm j‘: flz) de,

provided f(z) is integrable in (a, €), and this limit exists.

(1) J- bw f(z) dz is Jefined as Z_'zt J-: flz) de,

=3 == 00

provided f(z) is integrable in (¢, b), and this limit exists.
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a o0
(iii) If the infinite integrals J flz) dz and J flz) dz
- 00 a

+00
both exist, we say that I f(x) dz exists, and

J’+: flz) de = J.:o flx) dx + J:f(m) der.

Note. In the above cascs, whon the limit tends to a finite numbf?r,
tho integral is said to be convergent, when it tends to infinity with
a fixed sign, it is said to bo divergent, and whon it does not tend to
any fixed limit, finite, or infinite, it is said to be oscillatory. Whon
an integral is divergent or oscillatory, some writers say that the integral
docs not exist or the integral has no meaning. [ See Ex. 2, § 7°2. )

(B) Integrand infinitely discontinnous at a point.

() If flx) is infinitely discontinuous only at the end-
point a, i.e., if flx) >, as x —> a, then

b b
j flx) dz is defined as Lt J flx) dz, ¢ > 0,
a >0 Jate
provided f(xz) be integrable in (a+e¢, b), and this limit
exists.
(i) If flx) is infinitely discontinuous only at the end-
point b, i.e., if flxr) > < asx —> b, then

jb f(z) dz is defined as e1_})t0 jb—ef(a:) de, ¢ > 0,

provided f(z) is integrable in (a, b—¢), and this limit
exists.
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(iii) If f(z) is infinitely discontinuous at an internal
point cla < ¢ < b) i.e., if flz) > as z — ¢, then

b -¢ b
J f(z) do = Lt Jo f(x) de + Lt j fz) de
a €0 Jea e>0 | c+¢
when ¢ = 0 and & — 0 independenily.

Note. It sometimoes happens that no definite limit exists when
e and ¢ tend to zero independently, but that a limit exists when e=c¢'.
[ See Ex. 7, Art. 772). When e=¢, the value of the limit on the right
side when it exists is called the principal value of the improper integral

b
and is very often dcnoted by P S f(zx) de.
a

(iv) If a and b are both points of infinite discontinuity,
b ¢ b

then j flx) de is defined as j f(x) de + j f(z) dz when
a a [4

these two integrals exist, as defined above, ¢ being a point
between o and b.

7°2. Illustrative Examples.

Ex. 1. Evaluate S:O e dx.

I=Lt \¢ o= gp=Lt (1—e-€)=1.
e»c0 )0 €-»20

Ex. 2. Evaluate S;ocos tx dx.

o te; but this limit does not exist.

1=Li Secos tx de=Lt
e>0 )0 £-»20

Heace, the integral does not exist.”

*Although this integral does not exist in the manner defined above,
it is expressed in terms o. Dirac's delta function [ §(¢) ] in modern
mathematics. Detailed discussion is outside the scope of this book.
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400 dm

Ex. 3. Evaluate S_oo 1423
a dx o  dx

I-S o it ) 1427

— a llm "—=Lt —1q_ -1
-0 1+2? e>-oo Se 1422 e_)_m(ta.n a—tan~'e)

=tan~‘a+ 3.

Sﬂ dz

* de _r14 se' ar _ 1y -1/ tan-1
a 14+2? e )q 1+2? e (tan~"¢'~tan™"a)
=3r—tan’a ;

. I=(tan-'‘a+37r)+ (37 —tan~‘a)=mr.

1
Ex. 4. Evaluates df-
0 m‘:’i

IHerc, 1& tonds 10 >0 as z tends to 0.

x
1g» 1 dg 3
=1Lt =nt — %)=
SO xﬂ >0 Se m* >0 (1-e7)=3.

+1
Ex. 5. Evaluate S_l g‘f

Hecre, c:_‘ —> 2 ag £ -» 0, an interjor poinl of the interval (-1, 1).

0 1
I=S dus de,
-1z 0z

ldﬂ‘__Lt 1d.z:__” (l- .
Now, Sﬂm” €20 Je 2° ex0 \ ¢ 1)'

1
this limit does not exist. So SO g;: does not exist.

0 dx
Similarly, S . g%' docs not exist.

+1 dx .
e 1 z* has no meaning.

Note. In examples of this type usually a mistake is committed
in this way :
. 1 _ 1 . +1_1_ - _~1_]+1=_
Since SF"dx--m’ . S-lw“dx [ z1-1 2,
which is wrong.
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In this connection, it should be carefully noted that the relation
SZ fl(zx) dv=F(b)—F(a) cannot be used without special examination

unless F” (x) =f(x) for all values of = from a to b, both inclusive.

Here, since the relation ‘-%(— :’)= ;}g fails to have any meaning
when =0, and O is a value between —1 and +1, we cannot directly
apply the Fundamental theorem of Integral Calculus to evaluate this
definite Integral.

oo _ a
Ex. 6. Show that So e~ 8X ¢og bx dx=m,’ a> 0.

€ az =[¢= (~a cos bz +0 sin b‘.’":)]‘ Y
Soe cos bz dx [ 2i 2 [ Art. 33]

1

=424 p? {6~ (- a cos be+b sin be) —(—a)}.

[« o] €
S e~%* cos by dio =Lt S e=* cos bx dx
0 €é->oo J0

=£I;tm [‘-ﬁibg {67 (—a cos be+b sin be)+a,}]~

Now, Lt & "¢ (—a cos be+b sin be)=0
€E=>00

[*.* e"®— 0 and cos be and sin be are bounded ]

a .
a?+b?

+1 g

[~ o]
SO e” " cos bx dx ==

Ex. 7. Evaluate S

The integrand here is undefined for £ =0.

+1 1 ~-€ dr Sl dz
- =Lt gl B Y4 asL
S-—l x dw >0 S+1 w+e'l—>0 e x

=Lt [log (—2) ]::+Lt [log . ]:,

=Lt log e~ Lt log ¢ = Lt log -,
as ¢ and ¢’ tend to zero independently.

But this limit is not definito, since it depends upon the ratio e: ¢,
which may be anything, ince e¢ and ¢ are both arbitrary positive
numbers.
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. , +1 dg
f =¢, pJ ==Lt =0,
But if we pute=¢’, we get I S—l z e 0logl 0

Thus although the general value of the integral does not exist,
its principal value exists.

€
Note. S L %@, where the range of integration is such that z is

negative throughout, may bo written, by putting 2= —a, a3 ;gf
=[log z]i = [log (—2) ] -:: for log x is imaginary here.
Ex.8. Evaluate \* (; % onad
X. 8. valuate SO (i+m2)" X -

Put z=tan 0; .'. dr=sec?d d0 ; as x increases from 0 to -o,
@ increases from 0 to 3.
§7 tan®6 sec?0 de_Siﬂ . g _
I-—SO T geete T )p Sin 6 dé = }r.
Note. Thus sometimes an injfinite integral can be transformed
into an ordwary definite integral by a suilable substiiution. Bat
whenever a substitution is used to evaluate an infinite integral, we

must sce that the transformation is legitimate.

Ex. 9. Show that S:’ e~* 2" dr=n !, n being a positive integer.
[C. P.1938 ]
Let I, denote the given integral.
I,=Dt Se e~ o dz
e>o00 }0
€ €
=Lt {[—-e'-‘: m"] +,'LS e~% Ccn-l dm}
€->00 0 0
[ integrating by parts ]
=n Lt S:] e *g"tde, .0 Tt e7te"=0,

€->00 >0
[ See Das & Mukherjees’ Differential Calculus,
Chap. on Indeterminate Forms, sum no. 2(iii). }
=1 In-1=n (n—1) I, (as before)
=n (n—1)(n—2) I,-,=etc.

o0
=n (n=1)(n—2)---2.1 SO e~” dx

= 1, since S:o e-*dr=1. [ See Ezx.1 above]
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7°3. The integral S:o e ** dx.

!

Since, 6" =1/e** is positive and < 1-_%_19}2' (forz >0)

X
it follows that jo e~ ** dzr increases monotonically with X,

adj-xe‘x’dm<JX dz i.e., < tan™1X
) I 0o 1+22% 77 a :

[ See Appendixz 4, §4 ]

This being true for all positive values of X, however
large, and as tan"'X increases with X and —>3n as X—> o,

bq
it follows that Jo ¢~ *? dr monotonically increases with X,

and is bounded above.

Thus, the infinite integral L e~** dr is convergent.

Denote it by TI.

Now, a being any positive number, replace z by az.
o0 202
Then, I=J-0 ae” " * dx.
(e ]
Ie ® =j- ae - 2*1+2%) go
0

Since ae~?*(1+2? ig a continuous function for all posi-
tive values of z and @ (which are independent), assuming the
validity of integration under an integral sign in this case,

IJQ e~ da =J ~ {va ae~*1+2%) da} de. -+ (i)
0 0

0
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4
Also for any particular value of z, Jo ae~2*U+e?) g4

11 . e 1 )
=[— 2 1+2%° a=(1+==)]0=2(1 +a:“)[1—" e"(1+a:°)]

-> (1 + z?) as & —> oo,

. 2 _ *1 1
Hence from (i), I Jo 3

1+z2 dz

1
= or, I=% /n,

2 2
i.e., So e * dx=3./».

* gin bx dx.

7°4. The integral So

o  —ax 2
Let w =JO ¢ — ;-lp—b@ dz, a > 0.

Assuming the validity of diffcrentiation under the inte-
cral sign, we have

du o _
=1 ¢ cos bx dx
b 0

=2 flt-_b_z’ a > 0. [ Sec Ex. 6, Art. 7°2 ]

Now, integrating with respect to b,

= db = -1 "1-1-) = $« "12 see
% a!ag_,-bg aata.n a+G tan a,+C (1)

where C is the constant of integration.
From the given integral, we see that when =0, % =0.
from (1), we deduce C=0.

o0 ,—a% 3
j e¥sinbe 1], e (2)
0 T a

* For an alternative proof see Chapter VIII, Art. 821.
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Assuming « a continuous function of a, we deduce
from (2) when a — 0,

* gin bx n x
SO —— dx = 5 OF > (3)

according as b > or < Q.

Cor. When b5=1, we have

S“sinx
0 X

dx=-’2-'- e (4)

Note. Thero arc other methods of obtaining tho result. Students
may consult text-books on Mathematical Analysis.

7°5. Integration of Infinite Series.

We have proved in Art. 1'4 that the integral of the sum
of a finite number of terms is equal to the sum of the inte-
grals of these terms. Now, the question arises whether this
principle can be extended to the case, when the number of
terms is not finite. In other words, is it always permissible
to integrate an infinite series term by term ? It is beyond
the scope of an elementary treatise like this to investigate
the conditions under which an infinite series can properly
be integrated ferm by term. We should merely state the
theorem fthat applies to most of the series that are ordi-
narily met with in elementary mathematics. For a fuller
discussion students may consult any text-book on
Mathematical Analysis.

Theorem. A power series can be integrated term by
term throughout any interval contained im the interval of
convergence, but nol mecessarily extending to the end-points
of the interval. _
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Thus, if f(z) can be expanded in a convergent infinite
power series for all values of £ in a certain continuous
range, viz.,

fle)=ao+a,z+a,x®+ -+ to =,

b b
then j flz) de = J (ao +a,x +asz®+---) dor
a a

b
=3 J a,x¥ dz, .
a

or, sz(x) dx = jz (aptax+azz®++)de
a

x
=3 J ar2" dz,

a

provided the intervals (a, b) and (a, z) lie within the interval
of convergence of the pqugr__ggries.

Ex. Find by integration the series for tan™'x.

1
1+2?

integrating both sides between the limits 0 and e,

=1—g?4 gt -8+ to oo, ifg? < 1.

x
SO iima:’=S: (1-z?+a —z°+-) d.

‘. tan~‘m=a—-jzd4lxt-JxT e, ml <z < 1,

EXAMPLES VI

Evaluate when possible, the following integrals :—

£ [© de o (® zde
1. () Jo 14+2% (ii) Jo z*+4
" oo " oo
2. (i) ] a:j f T (ii) ze ®* dz.
o o

2 [ de o | T de,
3- (l) ) w-_s_' (ll) J_mws
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(" sin o dz, L
4. () Jo cos’z (i) Jol+cosz
N [(® _ dz o (2 dx
5. (1)J0 21+2) (11)J02_w

6. (1) N/l to dzx. (ii) J':" (1'_"_d§g)1'

A [ 2dz vy [T mdm
7. (i) Jo U+ z%)% (11) o 25 F1
A L N e dr
8. (i) Jo(1-2)* (i) Jo (z+1)(z+2)
Show that :—
9. |~ , = » [a,b>0]

o (x? ¥a)a? +02) Qab(a +b)

o

[ z dx 1
10. | iy aior T T =aror ey s (5> 0]

[ widz _m
W}, o 40" +5%) " 2(a+D) La,b>0]

o

. o0 -z S — .e log r -
12. (i) Jo e " (cos z—sin z) de=0. (ii) J 1t dz=0.
[ (i)} Divide the range (0, o) into two parts (0, 1) and (1, ») ]

[ +00 de
1?' Joo 22+ 2% +2

r1 1
7 i M -
o F log ¢ do= - +1)? (n > -1).

" 0o

an b
-, %% gin bx dz=&vz:_ X (@>0). [C. P 19381
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0 2°+2x cos 0+1 0ox +2a:c630+i

(ii) J dg g

fz+ \/l+a:2}"’ n? -1

where . is an integer greater than one.

l 7
) [ o itean™ 5

17. ) J sin awwcos b dz=4n. 0, or dn

according as a >, < or =0b, (a and b being supposed
positive).

G )j (sin 2z + cos 2z)® — (sin + cos z)* ds = 0.

18 % gin®z
oo 5
19. | "5 g a

* sin’ msc 7
dz = —m or, — . m

20'40 z® 2 2

according as m > or < 0.

(= (sinx)\? , =
21.“)(9c ) a

" oo : 3 €
99 (S_lf!_-'!?) de = 7.
Jo x 8
923. Find by integration the power series for the
following :—

(i) log (1 + x). (ii) log (1 -—=z). (iii) sin~1z.

o
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24. Show that :—

& [ dz - ;l_si_m 13smw ]
© ) Jsin 2 2“/5"”’[“2 5 toa 9 T

[ dr _« _12°, 132°

11 T Ty - — essece * 2

@ ) nype™1 25049 (2" <1l
z® zr5

(iii) J L e=x- sa1tEEI"

b*—a®  b®—a®
(IV)J dx—log +(b a)+ 9.9 | + 3.9 1 F oo

(v) Jo J1—e? sin®¢ de, where ¢ < 1,

Sl (1) (k)
2 27 1 2.4/ 3

y (¥ dx 2
= 0 ;2 < 1,
(vi} J o JI—k® sin’s where / 1

1- 2 13 2. 4 . ... }
2{1+(2) k +(2.4) kT

1,1
(vu)Jl_'_w -1-141

11 1.3
(vm)J —"1—' 2= g togostauser T

tan™ "2 n 1

25. jo “w de = E( 1)" (% +1)?
: PllOg‘r 7_‘.2_. 1 =3
26. (i) ol+a:dm 19 [Usezn’=6]

o (tlog(l—2) ., _a®
(11),4 0 po de= 6
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27. (i) Show that if a > 0,
1 1

1 1
a a+1+d+2 a:l;3+

Hence, deduce the value of the series

(ii) Show that if a > 0, b > 0,
x

1 1 1 1 _ 1
J’oi_-;-;”dx_“ a+b T av o a+3pT "
28. Show that

a—1

a

1 .
Jom“""‘ log (1 +2z) da;=--1 1 L

%p [1.2 Y34t (9p-1)2p]

[ Integrate by parts ]

ANSWERS

1. (i) & (ii) does not exist. 2. (i) 3 log 3. (ii) 3.

)

. (i) principal value is 0.
4. (i) does not exist.
5. (i) log 2.
7. () 1. (ii) 0.
17. (i) z—3x* + 32—+

10

(ii) does not exist.

(ii) principal valuo is O.

(ii) does not exist.

6. (i) . (ii) o

8. (i) does not exist. (ii) log 2.
(ii) —[zc+3zx?+ 32>+ -0- )



CHAPTER VII(A)

IRRATIONAL FUNCTIONS

7(A)’1. In the previous chapters we have discussed
simple cases of integrals of irrational funections. We shall

now consider here some harder types of such integrals.

7(A)2. If the integrand contains only fractional powers
of z i.e., if the integrand be of the form

1
F(x"),

where F(u) is a rational function of %,

the substitution is X =2z",

where n is the least common multiple of the denominators
of the fractional exponents of z.
[See Ex. 1 of Examples VII(A4)]

7(A)'3. 1If the integrand contains only fractional powers
of (@ + bz) i.e., if the integrand be of the form

F {(a+bx)V"},
where F(u) is a rational function oflu,
) the substitution is a+bx =2",

where % is the least common multiple of the denominators
of the fractional exponenis of (a + bz).
[See Ez. 2 and Ex. 8 of Examples VII(4) ]
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7(A)°4. If the integral be of the form

[ x™(a+bx")"dx,
where m, n, p are rational numbers.

(A) If p be a positive integer, expand (a+bz™)? by the

Binomial Theorem and integrate term by term.
[ See Ex. 4(i) of Examples VII(A) ]

(B) If p be a fraction, say, equal to r/s, where #and
s are integers and s is positive.

n+1 .
Case I. If ” ., —an integer or zcro,

the substitution is a+bx""=17z".

+ : :
If 'm-_n 1 # an integer or zero, we apply the following
case 11.
Case II. 11 m—: 1 + : = an infteger or zero,

the general substitution is a-+bx"=z3%x", -+ (1)

If however the integer is positive or zero,

alternative substitution is a<+bx"=3z",

If the integer is negative,
the alternative substitution in the form ax~"+b,
which is practically the same as (1) of case II sometimes

facilitates calculation.
[ See Ez. 1 of Art. 7(4)'8 ]

7(A)’5. The integral of the form

S dx .
(ax® +b) J(cx®+d)
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Here the substitution is
cx?+d=x2z2
Sometimes irigonometrical substitutions like
Xx=ktan 6, x=k sin 9, x=k sec 8, otc. facilitate

integration.

[ See Ex. 28(ii) of Examples II(A) and Ez. 8(i) and
Ez. 8(i3) of Examples VII(4) ]
7(A)’6. The integral of the form

{ dx _
) (px2+ qx +r) /(ax®*+bx+c)

Here we shall consider two cases only.

Case I. 1If px®+qx+r breaks up into two linear factors
of the forms (mz+n) and (m'z+#x'), then we resolve
1
(mx+n)m'z +n
then transforms into the sum (or difference) of two integral
of the type (B) of Art. 28.

[ See Examples 18 of BEx. VII(4)]

7 into two partial fractions and the integral

Case II. If px®+ gz +r is a perfect square, say (Iz +m)%,
then the substitution is lz +m=1/z.

In some cases {rigonometrical substitutions as 1In
Art. 7(A)'5 are effective.

It ¢g=0, b=0, the integral reduces to the form given in
the Art. 7(A)'5.

In all these cases, the general substitution is

J(ax’+bx+c\ y
px2+gx+r/ ™
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Briefly, we have considered integrals of the type

dx ,

PJQ
where P and @ are both linear functions of z, and P linear,
Q quadratic [ See Art. 2°8(4) and 2'8(B) ]

and P quadratic, Q quadratic.
[ See Art. 7(A4)'5 and 7(4)6]

Also, we have considered integrals of the type e

1(x)
S m dx,

where f(x) is a polynomial, and P, Q being linear or
quadratic. [ See Exz. 11 to Ex. 15 of Examples VII(4) ]

7(A)'7. The integral of the form

( __Mx) dx
) J(ax®+2bx*+cx*+2bx+a)

where f(z) is a rational function of z.

The denominaftor can be written as
nr:,\/{a(m2 + 12) + 20 (w+ 1 ) +c}
x x
and hence the substitution is
X+ 1 =Z or, x--l--z
X X
according as f(z) is expressible in the form
_1 1 1 _1 )
( m)¢(m+m) ot (a:+m)¢>(a: x
If b=0, the substitution
1 1
x2 +;§-z or, x’-i-g-z

is sometimes useful.
[ See Ez. 19 of Examples VII(4) ]
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7(A)'8. Illustrative Examples.
Ex. 1. Integrate S Fﬁff‘—?ﬁ)

Oomparing it with the form of Art. 7(A) 4, we find here

m=—3,n=3, r= -1, s=3.

Now, ’—"-:-1 # an integer, but
"1;{—:!4 : = —1, (an integor) e (1)

.". by Art. 7(A)'4, Case II, we put

1+z*=23%".
ce w3zt —1)=1. .'.$=(-z-5“_:!'i')"1';3' vee - (2)

dm=-(za__”:)”a. . (3)

» 3 2
s denom1nator=w“z='('gs'_'1)tla'

3\2/)3
I= —S zdz=—3z"=-% (H—_—:,—)——I
Alternatively. Since (1) is a negative integer, wo can put

x4+ 1=2z%

Thus, I=S de - ,=S gz *+1)"11? dzx.
w"{m”(1+}-)} !
mll
Since ¢~*+1=2% .. —x~*dzx=2?dz.
I= —S 2z~ '.2% dz=etc.

dm e
(x?—2z+1) \f(x?—2z+8)

It is of the form Case II of Art. 7(A)"6.

Ex. 2, Integrate S

. S o dz
(x—1)% Wi 2—1)2+2}

d .



IRBRATIONAL FUNCTIONS 151

It is of the form of Art. 7(A)'5

N2 sec?d 40

2 tan? 8. /2 sec 6’ putting z= /2 tan 8

; cosec 0 cot 9 do@
= — % cosec 0.

N(z*+2),
H-4

Since tan 0= T}Q z, cosec 0=

I Me*+2) 1 Mz®—22+3),

e I=— 3 9 z—1 d

Ex. 3. Inlegrate the following :

z?+1 -1 1
(1) Sa:“-i-l dz. (44) Sw‘+1 (444) Sm4+1dm
1+,
(i) I=) 1 dz ( dividing numerator and denominatior by 2?)
2® + -,
x
(1+ 1,)da:
— z
(a:-- -1)’+2
x
dz . 1
=S ;,_‘:2 (on puiting x— - =3)
_ 1 - 2 _,(ml—_—_l).
~/2t n 42 t.a.n o2
(ii) It is similar to (i).
1
(d)or [ 1-
I= z T = lm’ dx
z?+ -5 (a:+ -—) -2
@ T
=Szd ( on putting a:+ —=gz)
log °= - N2 _ 1og z?+1—-o.2
2J2 24+ A2 2,J2 a:"+1+:c~/2
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(i) I=3% (? "‘1)4+(f ~1) 4

= z*+1 z?—-1
3 Sm +1dz 3 S.'x;“+1d‘c

-1 afz?—-1\_ 1 22 +1—a /2
T 22 tan™* (’m .J?.)"; N2 8 sixita a2
[ by (i) and (is). ]
1—z2 dz

Ex. 4. Integrate 1432 Wit -i-':nf-l-_:c").

. (1——1.)da:
m(a:+ ),‘/ (a;+ +1
(1-g)a
(42 )a/ (4 2) -

__{ d-
= Sz o1 [ putting =+

| b

5=z

Scosec @ cot 6

cosoo 0 cot 8 & [ putting z=cosec 6 ]

=§ df@=60=cosec™ '3
=cosec"‘(£ci+—1)=sin"‘( @ )
T 1+2?

EXAMPLES VII(A)

Integrate the following :—
1 [ 1+%/z
) J t/a?s(l + »\/ -’5)

[ Put z=2%]
" J(m+2)+ﬂ(?c+2)

A .
") e+ +(J@+e)®

[ Put z+2=2*




1.0 [
5.@ |
8. (i) j 9‘-/(-15-”’3—) der

[ A
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Jr 1+ 3/z)? da. (ii) [

3

r—4q (i)

(1+a:2)%

(iii) j % (:;"’“3-4—) dz.

7.6) | V2779 4, (i)
A [ d. .
8.0 | Gy vy 0]

[ Put (3) x=2 tan 0 ; (i) x=3 sec 6. ]

a [ 22 dao .

9. (i) V- z+e) (i1)

10. () ; Vst gy, G50
11. 2’ b

J

12. ) (4a: 4z + 1) 4z + 4z +5)

13.

| N

~

14.

[

15. (i)

16. (i)

(a:+ 1) J(z? +1)

dz

dx

(22% + 9z +9) /(z® + 3z +2)

r+3

(z®+52+7) J(a:+2)

.

o

dz (ii) [

) @2 +52+7) J(m+2)
22 +1

(ii)

ot +20 ¥

de. @) [

J(2+ Jx) dz.

[ dr
x* (2+m”)%

dr

[

]

1"
mn.(l +w‘n)n

[ &

- I —
Ne 5—(1(;1 22) dr

dx
J @*-1)J(=*-9)

dx
3 i
Y (z - 2)*(z - 5)*

({z+ J(a®+2*)}"
) ;\/(a.a"l" wz) dx.

(2® + 42 +4)da:
)@ +62+7)J@+9)

= —1_
zt + z* +1dm
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17.

18.

19.

20.

21.

22.

23.
24.

-

-

INTEGRAL CALCULUS

Integrate

J’ (7'1'

by the substitution z=z+ /(2% +2+ 2)

and show that the value is —}2 log
LY,

25.

Integrate

J____ dz -,
x (@ +2+1)

by the substitution z=xz+ /(2®+2x+1)

and show that the value is 2 tan™* (z + /(2® + 2 +1)).

&

ANSWERS

1. 4[tan~! ({/z)+3 log (1+ J2)l.
2. 2 @+t —4(@+9)i+4log 1 +G+2)y.

8. 2 tan-—! (2+a;)'}.

@tz +2)+ax— /2
/(a' +m+2)+m+ 2

4. (i) am* + }gz* + ,‘sm"‘".
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4. (i) # @+a) -8 @+ )b

2342 1 (2+m’)!+ 1 (2+'c’)&

5. (l) &/( g+1) (ll) 8 4 m
6. (i) - i (1";3’"3- (i) 1 1n ﬂfz?_‘:‘“’!"

(iii) 2[log (2?4 N1+24)— J(1+a:4)]

2 (:z: - )72 (--) 2 “ —21:){_ ft .(._li—j“;)f.

T

7. (i) - - i) — . ° 3 3 s

x A/3 )

W1, NMz? -9\,
8. (l) "/3 tan (‘;/'('5,—_':‘4) z )

(ii) -2——1/2 tan~! (—

0.0) 3+t s ot J1og YEXD TR

w 5a/G2)
10. (i) N(1+z+22%)~3 sinh~? (Qmj;;l) —sinh™* ('41-13(;33-2:))
(i) , [a+ nla®+2)"

a a1, B 1o (1_—_‘”)
11. J/(z?+1)+sinh™’x J2 sinh 19

2
12, — 1 Jx?+4z+35)

8 2¢+1
2 1 - [543z
13. 3 sec (2:1:+3)+3'\/2 cosh ( +3)
2 . (___‘”_".'_1_” )
W - g™\ izig)

- +1 1. z+3— J(z+2)
15. (i) ,Js tan (43 m.\/(w+2)) log & 1 54 J(:+2)

(ii) 2 Mz +2)~ g tan™ (_;73%/-_'(%—4-—2—5).
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16. (i) ‘—3-3 tan-? ‘;’—351 (ii) > log
ity e )
18. Q‘%g tan~* (‘S-E/gl)—i 1032;_,:_%1;%.
19. —;/1-2 sin~! (f_:fa) 920. sin-! (i‘i%-—l

INTEGRAL CALCULUS

) o et

x®—z+1
«?'+z+1



MISCELLANEOUS EXAMPLES

1. Integrate the following functions with respect

tox :—
2 2 .

n x°+cosy . sin

(i) ey cosec®z. (ii) sin (p—a)
(ii) % 82 — cos Tx. (i tan o — tan 2

1+ 2 cos bz tan a+ tan z

(v) sec®z cosec®z. (vi) z® (log z)°.
(vii) see 2 log (sec z +tan z). (viii) 2® cos =.
(ix) sec z tan z /(2 + tan’z). (x) z cos®z.

(xi) (log z)°. (xii) tan~* (N/z). (xiii) log (1 + z%).

(xiv) z? sin"*z. (xv) 2% cos z. (xvi) “z*.

Integrate the following :(—

A [ (z—1)\2 S
2- (1) ] (52_+i ('Z:l?. (1]) ) (1 +m2)3 d.’r.
3. (5) | log _(12_+ ) g0 Gi) sin (log z) o
J r J T
N dr o [ der
4. (i) ] (® +e7%)2 (i) J @+ 1+e™)
5. () | (a+x)Ja?+2° da. (i) | (a® +2®) Ja+2z dz.
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6. (i)

7. ) J'

8. (i) _,

9. () J'

10. (i)
11. (i)

12. (1)

13. (i)

[ &

14. (i)
15. (i)

16. (i)

|

17. (i) )

-~

-

P £
J1+sinz

-

-

F

.

INTEGRAL CALCULUS

dz
x(x® +1)

z® Jr?-1

r+4

m—;—@“—_—il) dz.

{x.

2 tan" 1z
- g dz
(L+z2%)?

/1+sin 2z
1+cos 22 d.

B
cos o cos 2z
_ Afwdz_
(z+ Dz +92)

N
(z-1)*(="+1)

(ii) J

(i)

J

(i1) | e

(i3)

| &

@) |

(31)

(ii) )

G |

) |~
.,

6 | 2]

" eatan‘lx

.~

) |

T o +z—6

dz

(-5 Vit

[ 2+sin 2r .
L+cos2z

- g dI.
1+ mg)g

dex

(@ sin z+b o8 )%

x

et

sin(2 tan“N/ 1-

142

.Gz
z(z—-1)*(z* +1)

az_

)dm.



18. (i)

19. (i)

20. (i)

21. (i)

22. ) |

Evaluate the following :—

23. (i)

24. (i)

25. (i)

26. (i) )
27. (i)

28. (i) J

MISCELLANEOUS EXAMPLES

@ | 5

[ dp
sm x+ ta.n m

| &

(@=1o-4) ;.

) @—2)(z-3)

[ dx

z* + 18z +81

dx

~ 1 [
z¥(1 - a:)%: de.
Jo

o

® dz

Jo @ +22)?

3 s
(1+2)2+(1 +2)*

.7 log (1 + 37) d.

. dzx
@ [, s a1y

(ii)

G |

J (w2 +2a:+5)2.

@) | Vot Vot o

(ii)

(1) J

(ii)

(ii)

(i)

(ii)

~

r

~

-

8 cos z +2 sin z

3.'1: —92rx—3

) &= 1)z - 2z - 3)

dex

-iﬂ_

z? sin 3z dz.

0‘ log (1 +cos z) dz.

OOJT
Jo 1+z*

dz.

o T do

Jo (L +aX1+2%)

1 dx

Jo(L+22) Ji=z®

(NT 2241

1 a:-i-ld

159
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Show that :—

(1 dx
29. Jot +$)(2 +m) "288 nearly.
30. J-: x+ jzé-—-a:“z B Z
| e
32. ::m,\/a’ ;'ngm ( n—2)

[ Put x*=a? cos 20 ]

o~

T dx n
33 Jo3+2sinz+cosx 4

[ oo dr _1 -1 b
34. Jo a®e“+b%e™™ ab ban a
3. | log (r+ ;)1ia;"§=u loge 2.

[ Put z=tan 6 ]

36. If C,, C,, C,,...... Cn denote the coefficients in the
expansion of (1+ z)® where % is a positive integer, show that

Co C1 Ca ... Cn _2"1-1
1 + 2 * 3 + +n +1 n+1l
ANSWERS
1. (i) —(cot z+tan"'x). (ii) = cos a+sin a log sin (z—a).
(iii) % sin 8z —3 sin Y. (iv) sin 2a log sin (x+a)—2z cos 2a.

) —$ cotPe. (vl) 3z*{(log 2)* —} log =+ &}.
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(vii) & {log (sec z+ tan a)}?.

(viii) (x*—6z) sin +3 (z2? —2) cos z.

(ix) ¥ sec z A/L+scc®z+3 log (sec z+ a/sec?z+1).

(x) Yz sin 3x+ 35 cos 3z + 3z sin z+ 1 cos =.

(xi) z(1®* —381%461—6), where I=1log .

(xii) (x+1) tan~*( Jz)— A/2.

(xiii) z log (1+2?)—2x+2 tan~*

(xiv) 3z sin"'zg+3N1—22-3 (1 —:c"‘)’!a. )
(xv) Jid -(2]2&—2-)-2 cos {x—cot~*(log 2)}.
(xvi) e* (z' —4n®+ 122* — 24z -+24).

9 (; -1 1 _ 1+422°

2. (i) tan zt) (ii) (14 z*)*

3. (i) log :z:-—(1+ i) log (1+ ). (ii) — 3z~ *(cos log 2+ 2 sin log z).
4. (i) -3 (1+e27)" (ii) — 1+

5. (i) % 22?+3ax+2a°) Na*+2z*+3a® log (z+ Na®+z?).

3
(ii) ya% (z+ a)® (152 — 12z + 134 ?).

w0 ()Yl

IR = ohiv- G I ().

8. (i) —2:(_{-_?_2 :;)—g tan~'z. (ii) —_"/i.';.‘_“’j 9. (i) log :/m:?-l-l'
(ii) 2‘” L 1F30. 10, () & sec 2+ Nz 2;_1 (if) log +x T%E

11. (i) :—li-'?'gfs"’ +3 log 21, (i) log (z+ 4&‘*"-?‘1)--5_/_1??

12. (i) « (tan o—sec x)+1log (1+sin z). (ii) ¢® tan .

11
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. z—tan~'g ' .+ la+g) eaton'z
18. () N1+ g2 (i) (1+a’) Vi+a?
—-COoS &

14. (i) & {sec z+1og (sec z+1an a)}. (ii) a (a sin o+Db cos )

. | 1+ A2sinz_ 1 1+sin o,
15. (1) N log ,_ J2sinz 2 08 1-sing

(ii) % {x A1 —g?—cos™'z}.
16. (i) 2 N/2 tan“,\/g —2 tan~! WJr.

. % 1_ 1 1 -
(ii) log :_c-_1+ 9 1——+ 9 tan-'g.

17. (i) 9 log ®w—1)— g(wl i) 4]o (z® +1).

] 2 -1 2 ($_+ ‘}).

(ii) ;\/ 3 008 \/ 5
18. (i) 3 log tan 3z —7 tan? 3. (i) v {2x—23log (3 cos 212 sin z)}.
19. (i) e*—(n+-1) log (¢* +1). (ii) sinh-? (2"'; 1).

20. (i) o+ 2 {log (z— 2) ~log (xz~3)}.
(ii) 9 log (z—8) —5 log (x—2) - log (a:—— 1).

i) =1 3z_ } -1“7*-1 z+1 '
210 54 {mn LR (i) 16 2 +8(a:"+21:+5)
P 2 -
22, (i) 2 tﬂ‘n"(l-}-a:)i_ ( ) ¢ {U -+ -D N/Z-*-’L 2

N+ Vo +z?
23. (i) . (ii) -7 24 (i) 2(1—-21og ). (ii) = log 3.

25. (i) 2. (ii) 'Sz 26. (i) & log 2. (ii) 1.

27. (i) 29’7 V3. (i) Q—’:/é- 28. (i) —1. (ii) 52 cot='2.



CHAPTER VIII

INTEGRATION BY SUCCESSIVE REDUCTION
AND
BETA AND GAMMA FUNCTIONS

8'1. Reduction Formulsae.

It has been mentioned in § 1'6, that in some casés of
integration, we take recourse to the method of successive
reduction of the integrand, which mostly depends on the
repeated application of integration by parts. This is
specially the case when the integrands are complicated in
nature and depend on cerfain parameter or parameters.
These parameters may be positive, negative or fractional

indices, as for example, 2", tan”r, (z* +a,"')§, sin™z cosr
etc. To obtain a complete integral of these trigonometric
or algebraic functions, we first of all define these integrals
by the letters I, J, U etc. introducing the parameter or
parameters as suffixes, and connect them with certain
similar other integral or integrals whose suffixes are lower
than that of the original integral. Then by repcatedly
changing the value of the suffixes, the original infegral can
be made to rest on much simpler integrals. This last
integral can be easily evaluated and knowing the value of
this last integral, by the process of repeated substitution, the
value of the original integral can be found out. The formula
in which a certain integral involving some parameters is
connected with some integrals of lower order is called
a Reduction Formula. In most of the cases the reduction
formula is obtained by the process of integration by parts.
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Of course, in some cases the method of differentiation
(See § 819 below ) or other special devices are adopted
(See § 820 ). In the next few pages methods of finding the
reduction formulx of certain integrals are discussed.

Case I. Integrals involving oné parameter.
8°2. Obtain a reduction formula for S x"e3* dx.

Let I",=J’ z"e™dar. - (1)

Integrating hy parts,

Bflm %
" e dg=a"" ~ (’:J’ """ dx - (2)

x"e8% p (3)

or’ In= a - e n_1. sse ese

Note 1. It may ho ohserved that the integral on the right-hand
side of (2) is of 1the same form as the integral in (1) except for the power
of z, which i3 n—1, and which can bo obtained from (1) replacing n by
n—1 on both sides. If n be a positive integer, procecding successively
as above, In will finally depend upon Jo= fe*® dr=e%*[a, and is thus
known.

Note 2. In evaluating (3) from (1), we could integrate z™ first but
in that case I, would have been connocted with In.,, d.e., with an
integral whose suffix is greater than that of the original one, which is
not usually desirable. A little practice will onable the students to
choose the right function.

8'8. Obiawn reduction formule for

(i) S sin"x dx ; S.;- sin"x dx.

5
(if) S cos"x dx ; Sa cos"x dx.
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(i) As in Article 6'10A(1) of the book,
In =j sin™z dx

v n_l
sin” "xecos®,n=1| . h-
- = J- sin"" %z dr,

n
s n=1 -
~8in""'x cos X n 1I
n n
i1s the required reduction formula.

oe In = n-2

Also by (1), taking limits of integration from 0 to ?m,‘

3 -
J,.BSo sin"x dx=nn 1 Jop2 (n>1).

Similarly,
g n—1 :

. cos' wsina , n—1

(ii) Tu=\ cos"z dr = ~ 4t Iy_q
)l 2 n
T

n—1 .
and Ja= o cos"r dr = " Jn-2a (n>1).

o

165

(1)

-

(2)

(3)

(4)

Note. If the integrand be sinh™z or cosh™z, & similar process may

be adoptod.

8'4. Obtain reduction formule for

(i) S tan"x dx ; (ii) S: tan"x dx

( n, @ positive integer. )

Here, In=\ tan"z dx =j' tan™ %z . tan®z da
J 4

=| tan" 2z . (sec®z— 1) da
o

o~

=| tan™ %z gec’z dw—j tan™ 2z dax
o
t n—-1
== -_a_':;__i_@ -— In_s.
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Thus,
n-1
In-tinn-_lx-ln_z' oee L (1)

Also, taking limits from O to %=,

b id
tan” ™} a:]"f

J. =J% tan™x dx =[ - - J’:E tan™ 2z dz by (1)
" Jo ’ n—1 Jo Jo '

]
- . — —a. sse 2

" — 1 Jn 2 ( )
Note 1. If n be a positive integer,

tan"~ 'z tan"~ z  tan”" g

S tan"z da= n—1 n—3 n—>5
If n be odd, the last term is (— 1)5(”—1) [ tan ¢ dx
=(—1)}-D 105 scc 2.
If # be oven, the last term is (— 1)¥®+2) [ ian?z d
=(-1)¥+2) (an 5 —2).
Note 2. If the integrand be cot"z, tanh"x, coth™x, the same process

may be adopted.

8. Obiain a reduction formula for S sec"x dx.

In =J sec"z dx =J sec”” 2z sec®r dz.

Integrating by parts,

In=sec" ?z.tan

—J (n— 2) sec™ °z.sec x tan z.tan = do

A
=gec" %z tan 2 — (2 —92) | sec" %z (sec’z —1) dz
.

-

=gec" *zrtanz —(n—2) [ sec™z dz — J sec” 2z da:]'

o
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Transposing and simplifying,

2
Il'“Hsec nx;an x+:l1 fln-2-

(1)

Note. If tho integrands are cosec”@, sech™z, cosech”z, then pro-
ceeding as akove we can got the reduction formula for each of them.

8°6. Obtain a reduction formula for Se“" cos"x dx.

Let I,,,=Je‘“° cos”zx dz.

Integrating by parts,

ax n
- [ cos o n - 1
Ipn="- """+ J ™™ cos™ 1.’13.31!1 x dx

ax 27 ax
' cos"r . nle - . 1
=" == Y4 [ cos™ 'z.sin z — el
0 al a a

X {(n —~1) cos™ 2z (- sin z).sin & +cos" *2.cos a:} d:c]

e“"’ 1 9%
=" cos"z+" 'a:g cos™ Yx.sin 2

- ;;J‘g"”{(n —1) cos" "z (cos®z— 1)+ cos”m} dw

ax n—1

6*® cos" 'z (@ cos z +n sin z)

az
n -
= 43 [ ) Ja""‘ cos™z dz - (n - I)J.e‘“‘ cos™ 2z da:]'

Transposing,

o8 n-
(1 + ___) 7, = cos 1z (aa’caos z+ n sin m)_'_@_(%“_l__) Toes

e?x cos” ~Ix (a cos x+n sin x) , n(n-1) I
nZ+a? n2+4a2 "

or, ln
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8'7. Obtain a reduction formula for S (x2+a?)" dx.
Let Ip= J. (z? +a?)" dzx.

Integrating by parts (taking 1 as second factor),

In=z(x%+a?)" —J wz®+a®)""*.%2%.¢ dz
=g(z®+a®)"— 2n J (2® +a*)" Yz +a?—a?) dr
=n(z? +a®)" - an (2% +a®)" dx

+ 2na? J’ (22 +a?)" ‘da.

Transposing,
(J. + 2"'&) In, = m(.’b'g + ag)n + 2'"/(1:2 In_l .
x(x24a?)" ., 2na?

TES TS Rkt

Note. It may be noted that here . meecld not be an integor.
Put n=4% and compare with § 3'4(C).

8'8. Obtain a reduction formula for g (ax?+bx+c)" dx.

-

o.o Ill =

Let I, =j(aa:2 + bz + )" dz.

If a be positive,

T,,,=a"J(z"' +k*)" dx where z=2 + b

%a
and K =4“f&'l;”—': e (1)
and if a be negative, say = —a’,
In=(a)" j'(lc2 - 2°)" dz,
’ + 2
where z=m—-2-lé,' and k*® =4a4c;,3b . -« (2)
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But (1) and (2) are similar to that of § 8'7 above, and
can be evaluated by the same process.

8'9. Obtain a reduction formula for S(—x-%?;;.- [n# 1]

ix lr
Let In J’( _:_ d)u then, In_, j(me +(a:12)n— L’

Integrating by parts,

- ™ _ _(n*l)‘7r.'r
Ipn_1 -('82 +a.2)""1 J’ (’L _l_aﬂ)w dx
(’l’ +“2.)n =1 u(n I)J ( _T_a;)ﬁ dr
(,r +;'4)-n—1 + 2("‘ 1) In-y1— 2(‘1’& - 1) a® L.

Transposing,

m

2(n—1)a® I"'=(a:2 ralrt +n-38) In-,

[ = 1 X + 2n-3 ¥
ve 0= n-1a? Z+ad)" " 2m-Da "
8°10. Obtain a reduction formula for S( ax? +d;{x+ o
Let In=-”(am§ ':*_(—[Zm_l_c)n' T (])

If a be positive,

1 1z b ,eo_4ac~ b
I"EE’—‘J(z";:k"‘_)’_" where z=m+éa’k = a - (2)

and if @ be negative, say = —a’,

=1y dz
Iﬂ = (al)nj(kz — z2)n

-5, a _dactb”
where z=1z aq" B0 nd k i (8)
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Both (2) and (3) can be integrated by the same process as

in § 8°9 above.

Note. In Article 5°'1., Caso IV of the book, wo have remarked that
when the integrand is a rational fraction in which the denominator
contains factors real, quadratic but some repeated, in general a
reduction formula is required. Thus, to integrate such functions,
separato ropeated and non-repeated quadratic factors and for repeated
quadratic factors, use the result of the above Article.

. . : S x" dx
8'11. Obtain a reduction formula for i)
JaxZ+bx+ec

where n 18 any positive integer.

_rtdrx

= 7 o ‘
Jar®+br+e

.[Jeb .[-)

Noting that, " ="~ 9 ,
1 (2ar+b) ; b S "t
[ = - e — ..l”’ 1 p - — - b _
"~ %) Jaxitbrte o dz 2a ) NJax?+br+c dr.

r +
(Qafr b) o m.,,,_1

-~ -l' - - L] (zx
J Nax?+bx+e

Now,

=92 Jax®+br+c.x" ! -J'Q(n- 1)z™ 2% Jant +bx+¢ dr

n-2( 2
= 0mn—1 2 T e Ofay — z (‘W +bm+‘_"_)_
2"t Var*+br+c—2An—1) j Jaz® +bp -0

=2a3""1 N/(:lwz'l:bﬂ}‘*';}— 2(775-' 1) [ a[n,'l'bln_l +0In,..2 ].

n-1 -
In=ma vax®+ bz +c— '”5‘5’_1[ aln+bln-1+ CI""'z]
;
- 2:1 Iﬂ— 1
mn—l ) e
S Naz® +bz+e—(n—1) I,
9n—1)b -
Gty -ty
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Transposing and simplifying,

oxhl (2n~1)b (n—-1)c
In= - «/ax’+bx+c---——2an In-1-Tln-2-

Case II. Reduction formule involving two para-
-meters. '

P U s N

8°12. Obtain a reduction formula for S x™ (log x)" dx
(n, & positive int{—;yer).

IHere, since two parameters m, n are involved, we shall
define the integral by the symbol I, .

[m, 2% =J’ ™ (log .T)"' dx.

Integrating by parts,

1 ____.:'"H-l (1 s )w, - ___]_-____ n(l a,)'nwl . 1 ,,Bm+1 C/.'I'
mon= VR T 08 & z T
= g™+t % n m n-1
peuriay (log z) oot I (log )~ '.da
m+1

T m+1

(log .’I‘)"’ - 1‘)‘}“_"_“]? Im.. n-1

) I xm-l—il . n I
t.6., m,n=m+1(0g X) "m+1 m, n-1.

Note 1. Here wo have connccted, I, n with Ty, n-, and by
-guccessive change, the power of log x can be reduced to zero i.e., after
n operations we shall get a term I, o, 4.e., f ™ dx, which is easily
integrable. Thus, step by step substitution, I, » can be cvaluated.
It may be noted that when two parameters are involved, this is the

usual practice.

Note 2. Students must be cautious in defining these integrals.
Here as for illustration Im, n 7 Tay m
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813. Obtain reduction formule for

(a+bx) . dx
O e |
(i) Let Im, s J'(a, J;ba‘)m dez. [n #1]

Integrating by parts,

I (a + bx)™ mb j (@ + br)™ 1
My M 51

+ — dr.
—-(n—-1)2"" ' wu-1 a"t dz

+bx)" . mb
(:na Dari g Imtae S
.. _ _dr
(]l) Lot Ifm, yg“jmm(a+bm),,,
Integrating by parts,

o Im. n™=

I _ 1 . __ub dex
Hy n _ ('HL - J)xm—l(“ + [).’6)'"' m—1 mm—l(a +ba:)"+1
— - _——— - - -l -
(m— D™ *(a+ bx)"

o j (w+br)—a

- eer (D)
m—1) &™(a + bx)*t dr (2)
[ l I
(m_ l)a:"‘—l(a.+bx)"'
- .’_};_’ﬂ: 1 e n+;;z_a;"_’z_i Imy ngr-
an _ 1 o m+n—1
P Imy ni1 “(m-1Dz" Xa +ba:)”+ m—1 Im, n.
Changing n to n — 1 on both sides,
I, 1 m++n -2

“aln-1)x™ 1 (a+bx)"- St o -1a Im, n=1. =+ (3)

Note. Formula (2) or (3) can be taken as the reduction formula
for (ii). (8) is more rapidly converging. The other ways in which these
integrals can be expressed are left to the students, [ Seealso § 2°2. Ex. 9.]
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8°'14. Obtain reduction formule for

@) S x"(1 -x)" dx. (ii) S: x"(1 -x)" dx.

(1) Let Im, n =j .’Bm(l - T)n da

m+

__'m,+1(1 T) m+1

e (1=2)", n
m+ 1 m+ 1 )

m-i 1(1 _ ,r) " !’ ]
——-__m, +1 * m+1L Lias -1~ Ly

I 2™t (1-a)"t dr

w’".(l —2)" Y1 —(1- 4} dx

Transposing and simplifying,

I XM (1 = x)" n__
™ T m+n+1  m+n+1 ™"

1
(i) If Im, « =J z"(1 — o)" dx, by above, this
[ m+1(1 :1‘)"'

n
m+n+1 ]o+ Sy 01

m+n+l

n———-—-
m+tn+l

Jm, n=

ITMh [

Note. In Integral Calculus J,,, , is usually denoted as B, », tho
first Eulerign integral. It is also referred to as the Beta-functlon
vt ey,
[ Sce § 821 below ]

It is interesting to note that Ju,a=dnm %e., Bm, a=pBnm
although I, » & In, m.

8°15. Obtain reduction formule for
(i) I,..,..-S sin™x cos"x dx ;
3
(ii) Jm, n =S: sin™x cos"x dx ( m, n being positive

integers ).
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In Article 6'10, Case B of the book, we have discussed’
it fully and obtained

sin™ "2 cos" 'z n—1

I, o= m+ -
T " m+n T
or _ sin™ ' cos™ '  m—1 T in a similar
, = m+ Fn m-2,n

way, and, when m and » are positive integers,

7 _n-1 _m—1
My N m + " m; n-2 " + ” m-—22y .
Using § 6'8(iv), we also see that Jm, n=Jn, m.

8'18. Obtain a reduction formula for S;:)" nx dx. [n7#11

(1)

Tiet Inm, y,,j’ sin™x cos "z dzx.

Consider I';, q =J sin”x cos%z dr
_sin? 'z cos? e, g1, o
ptq r+aq
[ by § 815 above ]

M q—2-

Changing g to g+ 2,

sin?*'r cos®x , g+1

! = .
11)1(1+2 2)+q+2 p+q+2191,q.
Transposing,
) sin? 1y cos® iz  p+q+2
I'pya= — g+1 "J q+1 I’m a+2. °°° (2)

[g+1#0]

Now, replace p by m and ¢ by —# in (2) and use the
definition (1).
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Then, (2) becomes
1 sin"'ix m-n+2
n-1cos" x n-1

Im, n*= Im. n-2.

dx
sin™x cos"x

8°17. Obtazn a reduction formula for S [n7#1]

dr )
sin™z cos™x

Let [fm, n=j

ha

Consider as before,
],p, q =j Sinpﬂ.‘ GOSG:U (]m

_sin”'z cos®™ '  ptqt2

q+ l q+ 1 m q+2-
[ as in § 816(2) above 1

=

Replacing p by —m and q by — 2 and using the def. Im, n.

1 1 4mtn-—2

= * L] - — I - g
""" h-1 sin™ 'x cos" 'x n-1 ™n?

Im

8'18. Obiain a reduction formula for

Im,n =S cos™x cos nx dx,
connecting with (Z) Im_1, n-1, (i) Tm-g, n. (m # *n )

(i) Let

I, =J cos™z cos nx dx

2.(— sin ) sin nz de.

cosx.sinmr m =1
= 1 . - - COS
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Since, sin ne sin & = cos (n — 1)z — cos nz cos z,
_cos™z sin nx , m -
Inyn="" + J cos™ z.{cos (n — 1)z
n n
. — ¢cos nx cos z} dx

cos™x sin nx , m
= - -- " e e o " Im-—1. n—l_Im’ n |

Simplifying,

=.cos"'x sin nx m
m+<+n m-+n

]m. n Im-1. n-1.

(1i) From (1),

r
GO'@ " sin na m
[,n', ”n | s +

(cos™ *z sin r).sin nx de.
n n

Again integrating by parts,

co% ‘r 8in nw r cos™ 1y sin T COS T
L, o= + -
n n L n

+ ;l’ J fon— 1) cos™ %z (—sin «). sin z

m-1

+ cos™ 1z.cos x} cos nx da:]

(‘.Oq [l' sm nwr m(cos’”‘“la"__('_-ns na 8in .’I‘)

9 n®

+ 7 J {m — 1) cos™ 2z (cos®z— 1)

+ cos™z} cos nx dx

—
—

_cos™ 'z (n sin nr 08 # = m cos na_sin )

7

j flm—1+1) cos™z cos nx

—(m—1) cos™ 2z cos nx} dz

d

”l-

m-1

cos” m (n sin nx cos £ —m cos nz sin x)

+;’%‘[ m Im, n—(m “1) Im-—z. n ]‘
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Transposing and dividing,

n sin NX cos X —m €08 NX sin X
Nz -—m2

Im,n= -cos™1x

m(m-1)
n* —m*

Im-z, n.

There are three other integrals of a similar type.

(i) j cos™z sin nx dr, (ii) j sin™z cos nx dz,

and (iii) j sin™z sin nz dz,

which can be treated in a similar manner, and connected by
a reduction formula either with /.-y, n—y or with Ijy_g, »
in each caso.

For instance,

(m + n)jcos’"m sin nz dz = — cos™x cos ne+m Ln_v, n-1 ;

n®—m?) jsin”‘m cos nx dx

= (n 8in na sin £+ m cos nz cos x) sin™

~m(m—1) Im—-q, u ; ete.

Case III. Special devices.

dx

8°19. Obtain a reduction formula for S'(a +b cos x)*

_\. _dz
Lt In _j (@ + b cos z)"
. sin o
Consider P = @¥b cos 21 - (1)
aP
dx

_cos #(a+becos a)""*~(n—1)a+b cos )" *(—bsinz).sinz
@ +b& cos z)""1}?

12
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_ 008 z (a+b cos ) +(n—1) b(1 — cos*a)
(@ +b cos z)*

_(n=1)b+a cos z—(n - 2)b cos’s
(a+bcos z)"

=A+B(a,+13 cos a~)+C(a+b cos m)z
(@ + b cos x)" (say) @

Then comparing the coefficients,

A+ B.a+Ca®=(n—-1)b, Bb+20ab=a, Cb%= —(n— 2)b.

Solving,

a®—-b*

A= ~(n-1)  B=(@n-3) §» ¢= =" 2% (3)

b

b
substituting these values of 4, B, C in (2), we get

dP _ _(n—1)a®-b%)
dz b (@+b cos z)"

+ (2n— 3)a, L _w-2 1
b (a+bcoszx)** b (a+becos2)"®
Integrating both sides with respect to z, and using the
definition of I,

_ _(-1)a®-5%) , . (2n-3) _n—2
P= b Iu + b In-—]_ b In—g-
o o= — b_ _ sin x
*¢ n (n-1)(a%2-b2) (a+b cos x)"!
(2n - 3)a (n-2)

In-2.

G- 1)@®-b7) "'~ @= 1Na? - %)

Alternative method.

Let P =(a +b81:o:;a:5"'1 and V=a+b cos 2.
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cos g= "
b

dP _ d [sin .'r) _cosw —(m-1) sin o (__-_b__si_n__.'z_:)_
de  dg\v"t] yrr T v

- — — 2
=it P - (V)]

(-1~ a(@n-3)_(n-9)
b 'Vn b 'V'n—l b 'V":—z Lt

Integrating both sides . r. ¢ z and using the definition

I,,,=J (17'7”5,,' the result follows.

Note. When nis o positive integer, by a repoated application of
the above reduction formula, 7, will ultimately depend on 7,, which is
easily integrable ( See § 42 ).

8°20. Obtain reluction formule for S x"(a+bx")? dx.

In this integral, usually denoted as binomial differentials,
three parameters are involved and this integral, written as
Im, ny » =J. z™ (o + bz™)® dz can be connected with any
one of the integrals below :
(i) Tmgny ny g1 =Jfz™" (@ + b2")?"" dx.
(i) Tiny ny p—1=f2™ (a +bz™)?"* do.
(i) Im, ny pes=J2™ (@ +02™)?T* dz.
(V) Imens 1, pr1=J2™ " (a+ b2")** dg.
V) Ini-n, n, p=Jfz™ " (a + b2™)® dz.

(Vi) Im-l'"a n »= fwm+n (a' + bm”):p dwo
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(@) Im, n p=J2™ (a +b2")® dz. Integrating by parts,
mm+1

Im,, ny p= —;’"+ 1 (a; + bw"’)p

- {-,_—l- Jp(a, + ba™?P " ubx™ L™t do

m--1
I
j; + l (a' b "’)1’ 11'_):)1 Im+n, ” Pp—1 (1)

Again, as above,

m+1

z ] n\D
+i (a + bz™)

I, nyp=

_ ubp _ nyp—1
m,+]j (a+ bz™ — a)(a + b2™)P? dz.

[writing g™T" = -bl—a:m (a + bz™ - a) ]

Transposing and simplifying,

2™ g+ be")? anp

Ilnn oy D "’p_{ m+ .l. 7@p+?’l—b?l:—1 Im: iy D=1~ (2)

Changing p to p+1 in (2) and transposing, we get a
connection with the integral (iii), viz.,

mm-l-1 (a + ba,n)p+1

Ly 0y 2= an (p+1)
n(p+ 1)+m+1

an(p+1) Imy mr 1. SC)

Also changing m to (m—n) and p to p+1 in (1) and
transposing, we get

m m-n+1i (a,+b'v")"+1

Iy ny p= - nb(p+1)

m-n+1
nb(p+ 1) Im—m ny p41e °°° (4)
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To get a connection with Lin_n, u, p and Imyn, n, p Write

™ = .,»Zb (wm—n+1 . nbx™ 1)

1 - -
Im, 2y 17‘_"1‘1"6 ™ ""'1.(a+ ba:'"’)”.nb. " 1 dor.

Integrating by parts and simplifying,

mm—n+1:_(a + hmn)p+1 .

Ly p=""- bnp +m + 1)

alm—n+1)

! nT . (K
bnp+m+1) Ts-ny s - ()

Changing m to m +n in (8) and transposing,

wm+1 ( a + I).‘I:"')p-'- L
Im, ny p=— a(m + 1)

bwn+ow+n+1
B )(”pa(?:b+ ;; )I’"-l-m np. 0 (6)

These six formulie of Iu, n, » can he obtained by another
method.

Write P=z*1(a + bx™)* "1,

where 1 and ux are the smaller indices of z and (a+bz™)
respectively in the two expressions whose integrals are to
bhe connected.

Find Zf and express it as linear combination of the

two integrands. On integration the result can be obtained.

To illustrate the above statements we shall find a con-
nection of Im, n P with Im-[-n, 7y P
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Here evidently A=m, u=p. .. P=g" (g + pz™)?+*,

Z—f =(m+ )z™.(a + bz™?** +(p+ 1)z™* .nbz" " *(a + bz™)”

=(m + 1)z™a + bx™)? (a + b2™) + nb(p + 1)z ™(a + bz™)*

=(m + 1)ax™a + bx")? + b(np + n + m + 1)z "(a + bz™)?.

Integrating with respect to z,
P= ('m + 1)a. Im, ny pt b(np +n+m+ 1) Im+m 0y v

a8 a+ba?)? Wap+ntm+1)
My My P a(’)’";+ 1) a'(7"'+ ]) M-ty Ny P
which is the same as (6).

Similarly the other five results can be obtained.
For another illustration see sum no. 7, § 8°29.

8'21. Beta and Gamma Functions.

In many problems in the applications of Integral
Calculus, the use of the Beta and Gammnia functions often
facilitates calculations. So we give below an account of
those functions—their definitions and important properties,
some of which are however mentioned without any proof.*

Definitions :

1
(A) So x"-1(1-x)"1dx denoted by B (m, n)
lm >0, n>0]

is called the First Hulerian inteyral or Beta _function.

*Results (v), (vi) and (viii) are given without any proof here, as the
proofs are based on ‘“doubie integration’” which is beyond the scope of
the present book. Nevertheless, the results are extremely important in
applications and are to be carefully remembered.
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(B) S. e~*x""1 dx denoted by I'(n) [ n > 0]

is called the Second Eulerian integral or Gaml_na function.

Here m and % are positive but they need not be integers.

Properties :
(i) By property (iv) of Art. 6'8, we get

1 1
jow"“l 1-z)""" dx= jo z" (1 -2)™ ! de.
% B(m, n)=B(n, m).

(ii) T(1)= Jo e ® dr=1.
[ See Ex. 1, Illustrative Examples Art. 7°2 ]
o I‘(l) = 1.

(iii) As in Ex. 9, Illustrative Fxamples Art. 7°2, it

can be shown that even when n is not a positive integer,
00 (o o] 1
5 e " " de= njo e Tx" " dr.

. I'(n+1)=nI(n).

When » is a positive integer,
T'(n+1)=n!

(iv) Writing kz for z in (B), we easily get

© e n-1 de LD .
SO e kxxn 1dx-—--]-('"|-' [E>0,n > 0]

T'(m) T'(n)

(v) B(m, n)= T'(m+n)
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(vi) T(m) T'(1 = m)=— (0<m<1).

sin mn

(vii) Putting m = % in (vi), we get
(3 @)=
s T(3)= Jx

Alternatively, we can deduce the value of T'(3) in the
following way.

sin ‘}

Putting m=n=1% in (v),

PO pa, 9= o -0t

= Jo d [ on putting z=sin?0]
=mn.
Hence the result.
oo xm-1 oo xn—1
i) Bom, 0= [ 7= e
[ >0,n>90])
821 (A). Standard Integrals.

A 2 >=1
1 j sin®6 cos?6 d0 = ]
0 2I,(2+9+2 [‘l> 1]
i ! 2
Left 1s1ide==j0 (sin26)*? (1 — sin®6)*? d6

+1]

= éj:xg? 1-=2) %2  dz
[ on putting £ =8in?6 ]
-33(P3 7} ') = Right side by (v).
[ Compare § 6°'10B ]
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T 14 s
(2) J sin®9 dG-J cos?9 do= Jx, 2/
0 0 2 r (p+ 2

2
The proof is similar to (1) [ Compare § 6'104 ]

@) j‘: =X dx =3 /.

Left side = z’;s . e ? z!"_1 dz [ on putting z* =z ]

=3 T(}) by (B)=1% = by (vii).
[ Compare Art. 78 ]

8°22. Illustrative Examples.

Ex. 1. Obtain a reduction formula for Sta.fn"a' dr and hence or
otherwise find (4) S tan’z dx (49) S tan’z dz.

tan"" g
ne1 ~In-w

From § 84 formula (1), I,.=Sta,n"a= dr=
@i .. I,;=Sta.n5a: de=} tan‘z -1,

Is=3 tan®*z—1I, where Il-:Sta-n x dr=log sec z.

I,=% tan‘*z—% tan?z+log sc: x.
(ii) Iy=% tanzc—1, ; I,=% tan’z—1T,

1
_tan®z tan’z_ tan 2 __
Iu - '5 3 + 1 i

[ Campare § 84, Note 1 in these two cases. ]
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Ex. 2, Obtain a reduction formula for Ssec"m dz.

Hence find (1) S sec®s dr (4) S sec’z de.
n-2
From § 85, Ix= S sec"z dz = "o —@-@—w+"! 2 In-
-1 n—1
@ .. za=§ souty dp=""T 00y 2 T,
T soc’z tan z, 2 2
=" "3 - —+3 1,; I,=\ scc?z dxr=tan 2.
_sectztanx 4 sec’y tan r 2.4
Iy= ) 4 5" 3 +3 5 tan x.
(ii) Also I, = Sscc’x dz="%- :rGta.n a:+ 6 I ;
t
Ih_ser :n4tan zr+ Ia T, = seo 12.931 :r+ 11 :

[1=§ sec g de=log (sec + tan z).

sec’ frh.n) 5 sec!zr tanzxz 8.5 soc:rtan'v

L="""g—"% ¢ "% "TicT o
1.8.5
+24610g (sec x+tan 2).

o0
Ex. 3. Oblain a reduction formula for S 5 e~ cos"cdx(a > 0)

and hence find the value of Sm ~4% cosz d.
From § 86, replacing a by —a,

co n
I.= S 0 e~%* cos™w dx

e cos" ™'z (—a cos z-+n sin x) °°+ﬂ(n-1) T
n?+a? 0 n?4a®? "?

= -—--q:--—-.— +t'-('?: —"‘1‘) In-g [ ' Li e-2*—5(Qfora > 0]

Z-»00

is the reqd. reduction formula.
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Io= 5'44‘-4_"""5”5144“I 441 2(1) Iss
L=giy gt 3'-:%:242 RS A
L=ygp=m - L=
Ex. 4. Obtain a reduction formula for S da .
(z*+a?)?

Hence find the value of 5 dr .
(z'l +a’2)f
dx .
Let I,.=S .+ Integrating by parts,
(‘L.ﬂ + aﬂ)"f

Li=- " ,,+Z"S 2w dr
(x*+a®)? (22+a®)?
2 2__ .2
- E -+nS“’- *aloa gy
(wﬁ_'_ Q)T

(z%+ a*)*
=- - 'm ,.+’"I'|,'°na2 I“'i"Z'
($2 +aﬂ)'ﬂ'
Changing n to n» —2 on both sides,

In--: = ai",._'_*_g +(n_2) Tnoy _("“'2) a® Iy
(z2+a?) 2

A .02 4. n=8
(n—2)a* -2 " (n—2)a

(x2+a?) 2

This result can be obtained from § 8'7, by substituting — giu place

I,= 2 Lu-o

of n and changing the definition of I,.
dx 1 T 4
=\ - - === - + - ...I :
t S (w"‘+ a,“)‘; 5a* (m"+a.")¥ 5a® =

Iomgg — stz Iy s Tym e - %
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Ex. 5. With the help of a reduction formula, find the value of
yaq 5
Scmam )
cos®x

From § 816, we get the general form of the reduction formula as

_{ein™n 1 sin”*'z2 m—n+9
Tms n = Scos"m“ “n—1cos" 'z m-—1 T n-a [n#1]
1 sin®z 1 1sin®z 38 .
I.n 6= 5 06;5 - 5 I‘S! Ly Im —506‘3"&: 3 Im 2
sin®z 5 .
I., 2= gap 1 13005 Also I, °=Ssm"a: dzr

sin‘zcosxz 4s8in?zcosxe 4 2 . cOS @
— - - coS® x| g
5 5 3 5 8

[ From § 8'3(s) ]

- T < 1sin®x_ 1 sin®r_ 1 sin’z
* 51 6T BoosSe 15cosz | 5 coS
1 4 gin?zcosxz, 4 2
+-5-slna'cosx+5- —3 +5 3 cos .

Ex. 6. From the reduction formula for S cos™x cos nx dx obtain

S cos®z cos bz dzx.

From § 8'18 (i), I, "=S cos™z cos nx dx

cos"'a: sin ne n

I - - L ]
m+n mAn ™

Here, m=3, n=5;

coq ax sin bxr 3

o I, 5=S cos®z cos 5r de= 8 +3 Iay s

_cos?z sin 4z cos x sin 3x
12! S 6' _'—+6 In:l: Iu:l __._..4._._.._.._.'.. I019’

Io, ,=S cos 2z dm=-m]-‘;2-£

cos®z sin bz , cos?s sin 4x , cos 2 sin 8z , sin 2z
o e Taso ""——é" R 16 e 32 ._+___61__
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Ex. 7. With the help of the different reduction formule for

S z™ (a+bz")? dz, find the value of

) Sm’(a,+ba:“)‘ dz. CRFERA

+bx?)*
(i) Hore, m=38, n=2, p=4, and since p=41 is positive,

.*. (i) can be connccted with § 8'20 (1) or (2).

Using (1),
4 (a+bx%)' 2.b.4
Ty, 3 4=a'l '(a 4 :E_) 3 Isy 20 5
S (a+Dr?)® 2.5.3
IED 2r s=a';—'(g:"6.—‘)—l' ) - 6 - I'n 2) 2
8 (a4-b2%)% 2.0.2
I'h 2 a=m ([18)_‘13 )'—'"8 Isn a1

z'° (a+bx?) _2.0 I
]0 l() 11y 22 O

Igy 9y 1=

:rtc
Iia 2 O=S g't dx= 12

ST _z* (a+bzx?)* _ba® (a+dx®)*  0%x® (a+D2?)?
« Ly 2y 4= - - - smecm e R

_b"a:“) ((I.+b.'_r§”)+b‘ 'mlﬂ.
10 5 12

Using § 8'20(2) the result can be obtained in a different form.
(ii) For this, the suitable formulx are § 820 (3) or (4).
Using (3), replacing p by —4,

= 1zt 2(=8) 4341

I.-u 21 4_2(1;(—3) (a,+bz:°)s+ 2a.(-—3) I_.,, 2 3
1 1- ]

=6a ([a+bz7)° " 3a Lorar o

7 o =1 o(-9)+3+1,
s 2a(—2) (a+ bz?)? 2a(—2) v 3
zt
= da(a+5a)

. I =,_-'!'_ -__.m.t-__-.'.__l.. = -m‘—-————o
At nneaTEs (@a+b2%)® T 122 (a+ bx?)?
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Ex. 8. Find the reduction fornula for S (a+ g?;m!j%a—;?)"‘ (n#-1),

. (2 x® de

™ do
Liet Iy a (&+2ﬁ+ c_'a—:"_)"'
Consi ™% dz o
nsider In-,, n= (a+ 26z + e ) Integrating by parts,
B A 7" ™~ (2cx -+ 25)

Im- 2) n"—‘(m— 1)(&-7— 2bix '*-'_c—m")" +fm, -1 (.ft_;i-_Zl)a:+_c-m")"+i dz
2 e ‘PT-I . + n {2(’ " dz ]
(m—=1)(a+2bx-tcr?)  m—1 (@ +2bz+cx?)™t
™" ' de }
op\ T~ dr |
+2b S (w+2bx + c?)"+r

Changing n to (n —1) on both sides,

I A n-1 : «
T2 n=s T (m—1)a - 2bx+ cx?) ot [ 26 Iy n+2b Iy o)

Dividing and transposing,

e L

z
9%¢(n —1)(a+ 20z + cx?)"~*

-[nn n=

m—1 b
+2_c_6l—-—'1) Im-'n n-1 P Im—u ne b (1)

™% (g a™=*a+ 2z + cx?)

(a+2hz+cx?)-* ) (a+2bz+cz?)" da

Also, In-yy a-, =§
=a Im—m n+2b Im— wate Imv ne
Substituting and simplifying,

T omm B W(m—n)
mrT o e@n—m—1)(a+2bz+cx?)*"t " c(@r—m—1) V"

alm—1)

c(2m—m—1) T2 - (2)
Either of (1) or (2), may be regarded as a reduction formula.
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Henco, using (2), (a=5, b= —2, c=1, here ),

191

- z? 2 —4(-1 5.2
I"‘=_-4.(a:’—4a:+5)’] -+ f’: )Ia. 4+'3"Iu4
I —4.(-2) o
In!.; ! (ﬂ? __4x+5)=!] + 5 I""+ 5 10,4

_ —4.(-3)
Iy s { 6(;3 —4a:+5) ] + 6 Tor 4
To o=\,
LR T Py —4.u+5)" So{(a; 2}’+1}“
2 ds .
=SO (P 1) [ Putting z=2—x ]
340'5:)“’; 1?3 tan~'2 [ Using § 89 successively ]=A\ (say).

Then, I,, .= ;i‘ﬁwx

2 124x4, 21
Tona=—%~"35 *51*
3806 , 46

L. y=—35 F 5 A

3896 46 x 433, 46
~g5+ T 3508 Tt 2

23 -1
= 4+81:am 2.

™

Ex. 9. If fu,.=S;§ " sinx dx(n > 0), proce that
tn+n(n —1) up-=n{gm)"+*.

Integrating by parts,

ki m
u,,=[—:r,".cos T :+n S:— "~ cos z dz

=n{[a:"“ sin x]f—(n—l) Sf- z"~? sin da:}

= n(i"’)"_ b= 'n('n —1) Un-a.
UnFn(n —1) Up- o =n(F7)" "1,
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o — ) : 2
W sin @n—-1)z 5 _ S bor (s‘m ”"”) dz, n being

Ex. 10. If Sa= 0 sin o 0 \sina

an infeger, show that
Sn+ 1= S,.= %T, Vas 1 Va= Sn+1-

Obtawn the value of V.

w
7 sin (2n+1) z—sin 2n—-1) =
Here, s,.ﬂ..s,,=s0 in (2 )siiia; @n~1a

m . s
_Sy 2.c08 2'71”‘-_‘“_“_“’ de =2 Sy cos 2nx dx
0 sin x 0

- T
=2. [‘qm 2-?3“1] F_0 for all integral values of 1.

2 0
S""‘X=Sn=Sn_l ......... =9,.
T si T
sin -
Now, Sl:SO Si-ﬁ‘md =So dx = .
Sns)=Sa=4%m.

, 7 8in®(n+ 1)z —sin?nx
Also, Vaes = Vo= S 0 sin?g dz

S‘Q‘ sin (27 4+ 1)z.8in
= zsinz 4
0 sin?z

T si (2n+1)
T <

0 sin o

Va=Va-r=8a=3m Voo i = Vauy=dm, oo, V.=V, =4m.

adding, Va—V,=(n—1) g .

T
Since, = S: de=3m, .. Va=inm.

Ex. 11. Show that
(3) P@) =28 r;
(i6) TEITE)=-Tg

(##4) Sg" sin*0 cos®0 doasz” $in°0 cos*d df = Ay,
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(i) (@) =r(§+1)=§D(®) [ *.* D(n+1)=nD(n) 4d2t. 821(iii) ]
={r(3+1)=§4.r(})=44r@+1)=5.33r@)
=218 Jr, [ By Art. 821(vii) ]

(ii) Left side=I(3)I'(1— ﬁ)——m-!-l-—i—w [ By Art 821(vi) ] = 3‘31

(iii) By Art. 821(A)(1),

First Integral = ; r (1&:}([‘: )(1') .33 ~/7"5-f!% & W _ K 21.

By Art. 6'8(iv), Second Integral = First Intugral.
Ex. 12. Siow that

2#p(n+1)°

[y
r(n+a_;)=[‘(‘a”';”) P(an 1+1)

=2n—1p (2” - 1) [ By Art. 821(2ii) ]

) Q2
2 —1_(2n—-3
=2 r'( . +1)
==‘.3*;1.—-1.'211,_—_—_3[‘(2%—3)
2 2 2
211_,-_—_}_‘7)1,-7 .‘271—5 ...... 5_3.1[,(1)
2 2 2 Q 2 2 2

[ BBy repeated application of the result
of the above Article. ]

- Dy — —_ -+« 5.8.
_(2n—=1)(2n 3)‘5?ﬂ 5) -+ 65.3.1 . e (1)

Now, multiply numerator and denominator of (1) by

2n(2n —2)(2n—4) --- 4.2

2n(2n —1)(2n—2)(2n—3) ------ 5.4.3.2.1
Pln+3)=""9n 9 n.2(n—1).2n—2)---2.2.2.1 nx
r(2n+1) It
"2 2 n(n—1)n—2) --re-- 2.1 N

_I(2n+1) o/7
"9 p(n+1)

13
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Note 1. The above result can be written in the form
r'@rEn)=22"1r@)rn+3).

It is an important result often nsed in ¥igher Mathomadtics.

Note 2. The right side of (1) can be writton as (3).I'(}) where the
notation (a)s denotes a(a+ 1)(a+ 2)---(a+n —1).

I'(n-+3)=(§).C(3).
Ex. 13. Show that
B(m, 1) B(m+n, )=DB(n, I) Bln+1, w).

C(m)I'(n) T (m+n)0(1) _r(C(m)C(n)
U(in+n) T(l+m+n) D+ m+n)

r()r(m) l"(n)_
C{l+m+mn)

Lieft side=:

Similarly, right side- =

IHence the result.
Ex. 14. Evaluale

S:J gV =10 B E=T g,

and jind its value when a=pg =§%.

Put 2=ty, .". de=tdy; whenz=0, y=0; r=¢{, y=1

1 - . -
Izsotawnel. lyatl=1() _\B+k=1g,

= (e tB+2%=1, (a+ k) P(ﬁ""k).
(a+ B+ 2)

When a=8=4%,

¢ L+ I+ 3)

— 42
I=t " GkF1)

=2k I;‘?li{%;g;{;rl(?()é‘f_?)) [ By Ex 12 and Note (2) above ]
[ By Ex. 12 and the Note (2) of Art. 822 ]

= tﬂk . _(&)k_"'r_ .
2%k |
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EXAMPLES VIII

1. Obtain a reduction formula for [z"e **dz, (n# — 1)
and hence find [z*e™ %" dz.

2. Show that [2%e*® da = 3-4 (a’z”® — 3a°z> + 6ox - 6).

3. Find the reduction formula for
(i) feot™z dzx. (i) [cosec"z dz.

4. If I,,= [sinh™0 d6, then show that
nI, =sinh™ 10 cosh 60— (n— 1)]5-s.

5. Obtain the reduction formula for
(i) [tanh"@ d6. (i) [sech™0 de6.

6. Show that il I, = [e"® sin™bz dz, then

. 2

I, = a sin hx — nb cos bx S8 i1 po 4 n(zz,_-_— l)b_ I
/4 o P d o 2 ~2.
a® +n2h? o +n%p% "2

7. I Ip.=[x" cos bz dz and J.=[z" sin b2 dz, then

show that
Q) bIn=2" sin br — ndp-1.

(ii) b= — 2" cos bz +nly. ..
(iii) b2, =2z""*(bz sin bz + n cos bx) —n(n—1)I_,.
(iv) b2Ju=2"""(n sin bz — bz cos bz)— nln — 1)Jp-s.

8. Find the values of the integrals :

i o 5 .. '_ e

(1) J (.'I} — 6z + 7) dez. (]1) ) (w:s +1)*

dx [ 2? dp
(iid) J(w“+m+ 1)° (iv) ) NazE-9z+9

9. Show that

n 2, ,.2\7 2
2y o2, _xla®+2*)®  na® .
In j(a, +2°%)7% do n+1 +n+1 In-2 ;

find also I,.
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10. If In=f(1+2%)"* dz, (n > 1), deduce that

2n(2n_ 1) 4n (n—1)
a® a®

In In-1+ In-z

= % am(1+m2)n__ 2@";2 ea,:a:(]_ +m2)n—1.

11. Show that if un=[2" \/a® —z? dx, then

3
n—-17 2 _ _2\% _
€T (a,h xT )__'_n. 1 un—z-

Up = —
i n+2 n+ 2

2. Tind the reduction formula for

" dr
(0 J’x/ﬁam—-m'“' (i) j- n«/w
18. Il I.=[f2" Ja—z dx, prove that

8
(21 + 3)[n=2anIn-4 — 22™a — x)=.

a
3 - T
Hence, evaluate Jo 2° Jar—x? dex.

a” dr
14. 11 2 =j Nax® Fbw e
(n + Dawny1 + 320 + Dbun + ncun.., = 2" Juz? +bzr +c.
15. If In=[(sin z +cos z)® dz, then
nly= — (sin = + cos z)* " 2.cos 2z + An — 1)1 ,.

16. Show that

» show that

N \° . de _2m-—3
0 Tn= |, (e o

(..) oo ____:13____ ] 307 7!
Wl T+z58 " 24.6.8 2

In_ 1.

™ ar
T 3
17. Show that if I. ==Jo cos”z dr and Jn =L sin"z dz,

-1

() In=Jn. (ii) I,,=’—’;'—b—~ In_.(n>2).
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18. With a suitable substitution, using the previous
example, find the values of

1 n o0

. x .. dz

(1) JO Jl_wz d.’L'- (11) jo (1 +x2)n
( 7 being a positive integer. )

1
19. Prove that 'um,=Joa:"' tan” 'z dz, then

1
(n+ g+ (17— Vtgn—g = ; o

+1
20. If n>2 and I,,=J ) (1-22)" cos mz dez,

then m2In=2n(2n -~ 1)1 — 4nln — 1) In-,.

w

7
21. If Ua =J0 0 sin™@ d6 and n > 1, prove that

L, _n—1 1
Un= " U""2+n2'

22. (i) Obtain a reduction formula for J. (+ w2)g22/1 g

o dr

and (ii) ﬁnd[0 (1 +z2)" ~/1+;.5' [ Put x=tan 0

23. If ¢(n)=j0 e “z" ' log # dx, show that

$(n +9)— (2n+ 1)pn + 1)+ n2p(n)=0.

L

r 1
24, If In=J0 tan™@ (6, prove that

WMIngy +In-1)=1.

1 — " ]
25. Show that jo 2% (log )" dx = ( a%z___ln
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. 1
28. Show that if Bm, o= Jo ™" Y1 - z)" *dz, then

(m ! (- 1)!
Bms n= ﬁnpm (m+ﬂ,—1)’

( m and % being integers, each > 1 ).
27. If i, n are positive integers, then

b -
Loy n =J (m - a')m(b - 33)" dz = _?Z‘S_)'_n 4(.-!)1 Iny -1,

_m l n | (b a)m-{ n+1
Hence, prove Imy n= (m +n+ 1) !

28. Find the values of

119

r’% 3
(1) jo sin®z cos®z dr. (ii) . sin’2 cos’r dz.
o
'r ) [ dx
(iii) j- T dex. (iv) o s
J sin®z cos®r

29. If I'm, n=[cos™z sin"x dz, show that
(m+n)m+n—-2)1n, »
={n-1) sin®z—(m —1) cos®*»} cos™ 'z sin" 'z
+(m-1)n-1DIn_q, n-g.

30. Obtain a reduction formula for

Im, o= fcos™z sin nz dz, and deduce the value of
o
o cos x sin 3z dx.

81, If I, »=/[sin™x cos nx dz, show that

m Cos & cos nz tn Sin @ sin AT . -1

Inyn= " z
my n nﬂ_mz

1) fnean n
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m™
.
T
32. IfIm, n= o sin”x cos nr dx and
J
_71’
-5 L) 7' .
Jmy o= , Sin "z sin nx dzr, show that
ol

(m+ n)Im, w=sin 3nn— mIm-yq, n-1 (m > 1)

m

33. If f(m, n)= ﬁ cos™z cos nx dx, show that

m(fm. ])
m?2

flm, n)— ——- f(m 1,n-1)= flm—2,n)

" fm -1, n+1),

and hence show that f(m, m)= 2,,?“-

dx

34. Obtain a reduction formula for j- (a+b sin m)-n'

35. Find the values of

dr . d
(i) 0 (1+cos c:zrcos z)® (i) j(1+e :in z)? (e<1).

36. Using the integral [2™(a + b2?)? dr, find the values of

7 5
) jmﬁu + 207 . (i1) j - e
(1+22%)
[ Use § 820(5) ] [ Use § 820(4) ]

(iii) j 1":/—1 ‘—;:;,' [ Use §.820(6) ]

37. Find the reduction formula for [z™ /%az—z® dz.

a™t? (2m+1)!

2a e .
Hence, show that jo z™ J2az - 2* de = = nt 2™ (m+92) | m ]
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oo
38. If I,,= 6 2™e * cos £ dx and
y
o0
Im = 0 z™e % sin z da;,
o

then prove that (m being an integer > 1)
(i) Im = %m(Im_]_ - me_ 1). (ii) Jm = %m(l-’n_ 1 + J";.. 1).
(ill) Ion - mIm_l + %’"’l;(m - 1)Im_2 =(.

&n

39. Show that jo sin 2nx cot x dx = }n.

40. (i) If un= [cos n0 cosec 6 d6, then show that
2 cos (n—1)8,

Un — Un—o = n—1
() It P =J gin (2n— 1) 2 iz, Q =j§in2nw o
i sin z 0w sin®z

show that n(Py,., — Pn)=sin 2z
and Qn+1—Qn=Pn+1-
41. Prove that if

™1 -cos nx : TR
I = == """ dx, where n is a positive integer
0 1L—cosz

or zero, then Jnyz t In=2Jnt1.
r
(T gin® 0 ,, nn
Hence, prove that Jo sin®e do = 9
. (™ sin n0 . .
42. (i) Prove that o sin 6 d0=0, or, n» according as

n is an even or odd positive integer.

(ii) By means of a reduction formula or otherwise,
prove that

=—— d0=nn, » being a positive integer.
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43. Show that if n is a positive integer, then

27 cos (n— 1)z — cos ne
0 l—cosz

de=92n

O [ o
and deduce that J (SI.n %_n_a: dr = 2na.
o \sin 32

w

7
44, If I, » =L cos”x sin nx dz, show that

1 92 98 gm
I, m=2’,’,’,‘;1 [2+ 9 + 3 4 eer F - .

(e o]
45. Show that Jo e "“ gin"x dx

n(n_— 1)(n—2)--- 1
" (@ +u®fa® + (- 2)%} - (a +3%)a®+1
if % is odd ;

'n,(n l)(n 2) ‘2.1 1

T+ nHa? + (-2 (@®+2%) a
if 2 is even.

T

z
46. If I,= JO (@ cos 0+ sin 6)" 9, then
nl,=ab (“n—e + H" 2) + (n - 1)(0,2 + 7)2) In_,.

47. If I.=[(a cos®z + 2k sin r cos r + b sin®zr)™" dr,

prove that
4n+1Nab = h®) Tnpo — 220+ 1)a +b) Ly, +4nl,

h(cos @ — sin’ 'r) +(b—a) sin z cos 3

L APPI!I the alter 'na.twe method of § 819
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48. Show that

0 7w+ (1 - o0 o= gorers Do LDV,

[P >—19q>—1]
[ Put 1+xz=2y]

(ii) J: (z— a)™b - 2)" dz = (h— a)™H"+? E(%%;':ll-)g(—: ;-)l).

{m>-1,n>-1]
[ Put c—a=(b—a)y]

49. Show that

J—o e~*? p2° clx={:1‘(a;1)- [a >~-11]

[ Put z*=y.]

50. Show that

[ <] o0 .
e~ % 2% dr x e~* dy = 1o
0 0 8.2

[ Putz*=2]
1. Show that
Blm, n) Blan+mn, 1)=Bn, 1) Bn+!{, m)
= B(1, m) B(lL+ m, n).
92. Show that
I(3) T(3)----- I'(3)={en".

[ Combine 1st and last factors, 2nd and last but one, cle. and apply
formula (vi), § 821.]

3. Show that

/]

r _dz 1= 3 [ Put z®=2]
0(1-2°
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B4. Show that the sum of the series

1 1 m(m+1) 1
n+1+m'n+2+ 21 n+3
pmlm 1w +2) 1 to oo
3! n+4

_T(n+ 1T(1 —m)

P(n=m+3) » where # >~ 1 and m < 1.

[ R.S.=L(n+1, I— m)=so (1—=2)"™ de ctc.]
55. Show that

 sin*""'0 cos®"7'0 76 =1. T(om) 1(n)
0 (a’ sin"30+b cosze)m-l-w. o (Lmbﬂ' 1‘(’HI;+’M)

[ Apply Art. 821 (VIIT) ]

ANSWELS

-axr

I,=- Ga,“ (x'a*+4xa’ +120r%a? + 24za + 24].

3.(i) I,= ~"°7:"_"1“'—I,.ﬂ,. (i) —257 ;"f‘i"" +z:? T.
5.0) Lo=="0000 g, () I,=%0RT O kO By
8. (i) (z—-3) [(‘” Sl 7’ 121(?9 (22 =Gr+T)' 430 r (2 —Ge+T)?
e D 0 IS
(i) g 1)‘s+§4(.m:§i‘1)—=+1s(fm+1) 16 o'z
(iil) gz 2::: 1)“+3(a;2i;}|- 1) sf/s ban ™" gmj}l'

(iv) 2 if’iﬁ Vo =97+ 2—3% sinh-1(z—1).
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9. iz(a*+z?) +8a (e +22) +3a" log (z+ JarFzd).
12, (i) nl,= -z~ " ~42a,w—a;—'j+(2rl. -1) al,-,.

(ii) I,,-— _'a/.‘.". -1 +m227 . 1. Tra®,

-1)g"-* n—1"""" 256
18. (i) ”;1-:::2 ------ _2, if n is odd. *
n—-1n-3 1 = . . g
n m-2"""9"9 if n 18 even. )
W M~-32n—-5 1 = . 1
(i) In—-922m—d4 2 2 rifn>1 |
and ;’. if ne=1. ]
. 1 ® A —2
Y . = ol PSP e - ™ —-I_
22. () I, 20 —1 (L+z3)"-* N1+ x? Fop—1n
(ii) 2n—-22n—4 | 2
2n—12n—3 3
5w iy S cos'z , 4 cos’r 8 sinzx
28 (1) 4096 (i) g (i) —gingt asing” |3

5 =l
(iv) 2[ L tan* -+ 2 tmf-}' x4 cobﬂ" z ]l

_ —cor™mcosnr , M 1
80. Im n= wm+n m4an In-1s -1 3
84. (n—1)a?-0?) I,= b cos z F(2n-3)a In-, —(n—2) In-,.

(a+b sin z)*~*

35. (i) ;r - (2+ cos®a) cosec®a.

¢ cos 2 t'hn_é:_z_:__ -I;g
1—e¢? 1+e sin a:.+(1 )%— tan™ { Nl—e }

(i) 4

(1+a; [ _ ]
36. (i) ‘g 11g% | 99w ~ 3627 +8

(i) 31+22%)F @2 -1). (iii) 2 V5.

_x™ (2azx~— oM +2m+1)a

m+2 m+2 In-1.

8%7. Im =



CHAPTER IX
AREAS OF PLANE CURVES

[ Quadrature™ ]

9°1. Areas in Cartesian Co-ordinates.

Suppose we want to determine the area A4, bounded by
the curve ¥ =f(r), the z-axis, and two fixed ordinates x=a

and #=05. The function f(z), is supposed to be single-valued,
finite and continuous in the interval (a, b).

N

Q L

M X

Consider the variable arca QQLNP=A say, bounded by
the curve y =flz), the z-axis, the fixed ordinate @I, where
OL = a, and a variable ordinate PN where ON =z. Clearly,

*The process of finding tho area, bounded by any defined contour
line is called Quadrature, the term meaning ‘the invostigation of the
size of a square which shall have tho same area as that of the region
under consideration’.
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A has a definite value for each value of 2 and is thus
a function of z. When z is increased by an amount 42
(=NN'), A assumes an increment A4 =the area PNN'P’.
Now, if f(zi) and f(z,) be the greatest and the least ordi-
nates in the interval Az,

such that, s < ¢, < s +4z, 2 < v, < o + Az,

clearly the area 44 lies betwecn the inscribed and circum-
scribed rectangles JIN' and I'N’,

ie., fla,) dr < A4 < flx,) An.
floa) < 4 < j) - G

Now, as Axr approaches zero, by the continuity of the
function f(z) at =z, f(r,) and f(re) both approach f(x), and

also j:: tends to ga: Hence, as the relation (i) is always

true, we get in the limit
dd _
dr —f(.’l‘).

by definition, 4= [ f(z) dz+ C=F(z)+C where C
is an arbitrary constant, and F(2) an indefinite integral of
f(z). Now, when z=ga, PN coincides with QL, and the
area becomes zero. Also, when z =20, the area 4 becomes
the required area 4,.

0=I"(a)+C and 4, =F(b) +C.

b
A =F()- F(a)=Sa #(x) dx.
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The definite integral
b b
j f(z) dz, i.e., J y dz
a a

therefore represents the area bounded by the curve y=f(z),
the z-axis, and the two fired ordinales T=a and x=0".

Note. An alternative method of proof of the abovo result, depend-
ing on the definition of a definite integral as a summation, has been
given in Art. 6'3.

Cor. 1. In the same way, it can be shown that the area bounded
by any currve, two giren abscisse (y=c, y=d), and the y-azis is

‘d
S x dy.
c

Cor. 2. If (he axes Le oblique, w being the angle between them,
the corresponding formulr for the areas wonld be

d .
sin w Sb y dx and sin @ S x dy respectively.
c

Illustrative Examples.

Ex. 1. Iind the area of the quadrant of the ellipse +p‘ 1

beticeen the major and winor axes.

Y
B

v

O
4 ST
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Clearly the area being bounded by the curve, the z-axis and the

ordinates £=0 and z=a, the required area = S: y dx

=\®b /5_ a [..:c’ Y _ ]
SO aJa, z? dz, . ag+b,§1 for the curve

nw
=(—I;S:a cos 0 . a cos 0 d0 ( putting z=a sin 9)

_ab sin 20) 3
25 (1+ cos 20)(10— {0+-.§_-_}0
=(_l)?_)"ﬂ'= .]1,”(11,

Cor. 1. The area of the whole ellipse is clearly four timos the

above, t.e., =mab.

Cor. 2. Putiting L=a and proceeding oxaclly as beforc, the area
of a quadrant of the cirele, #249%2=4a2, is $7a?, and the area of the

whole circle=ra®.

Ex. 2. Determine the area bounded by the parabola 9*° =4oax and
any double ordinate of if, say »=1x,.

Y

The area OPN is bounded by the ourve y?=4az, the z-axis, and
the two ordinates =0 and z =z,.
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x x -
area O.Z-"N=So1 Y d:::=§ol Ndaz dz

[ The positive value of y is taken since we are considering the
positive side of the y-axis ]

= Jia [81]

= ‘\/4—;-&-'31‘}:%”1!/1
( whero y, = PN= \/4az, ).

The parabola being symmetrical about the x-axis, the requirod
area POQ,

=2.%x,9,= 5.9,
=% the arca of the rectanglo contained by PQ and ON,

#.e., =% the aren of the circumscribed rectangle.
Cor. The area bounded by the parabola and its latus rectum = §a?.

Ex. 3. Find the whole arca of the cycloid z=a(0+sin 0),
y=a (1L —cns 0), bounded by its base.

The area of half the cyeloid, viz.,, area 40C, is evidently bounded
by the curve, the y-axis and the absciss® y=0 and y=2a. Hence,
this area is given by

2
s

[ *.* y=a(l—cos 6)

" . a
=So a (0+sin 6).a sin 8 do 2= a(9+sin 0)

14
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=a’[— 6 cos 0+sin 6+ 4(0 —3% sin 20)]:=£m".

Hence, the whole area of the cycloid is 3wa2.

Note. It should be noted here that if AM be drawn perpendicular

M
from 4 on OX, the expression SO 1/ dx represents the arca O 4M, and

0
not the area OAC.

Ex. 4. TFind the area of the loop of the curve
zy?+ (z+a)® (x+2a)=0.

Y

Here let us first of all trace the curve. The equation can be put
in the form y?= _(x+a);:(_m+_gq). We notico that y=0 at the points
B and 4 where 2= —a and = —2a, and y—> 4 when z—0. For
positive values of z, as also for negative values of x less than —-2a,
y? is negative and so y is imaginary. There is thus no part of the
carve beyond O to the right, or beyond 4 (r= —2a) to the left. From
A to B, for each value of z, y has two equal and opposite finite values
and a loop is thus formed within this range, symmetrical about the
z-axis. From B to O, eac'. value of z gives two equal and opposite
values of y which gradually increase in magnitude to oo as z appro-
aches 0. The curve therefore is as shown in the figure.
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The required area of the loop now
=9.ares APB

=2, S_a 9 dz=2 S -a '\/r(“_;:"'?‘;_)_—f(&’;?@j dz
~2a ~2a T

and substifuting z for 24 2a, this reduces to

=2§ a cos 0?1; éﬂ_ 2a sin fcos ‘f dé

[ putting 2=2q sin? g]

T
Z

=9,%
2a SO

cos 0 (1—cos 0) do=2a"® (1- Z)

=3%a? (4—m).

9°2. Area between two given curves and two given
ordinates.

Let the area required be bounded by two given curves
y=Ff1(r) and y=Ffa(zr) and two given ordinates z=a and
z =0, indicated by @1Q2P2P,1Q; in the above figure, where
OM=a and ON =b.
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Clearly,
area Q]_QQPQP;,Q]_ =area PlMNPg - area Q]_MNQQ

= j: fale) dz - J: fa(z) da
= S: {f1(x) - fa(2)} dz

b
=j (v, —y2) dz
a

where ¥, and 7. denofte the ordinates of the two curves
P, Py and 1@ corresponding to the same ahscissa .

Illustrative Examples.

Ex. 1. Find the area above the x-axis, included betwceen the para-
bola y?=ax and the circle z* +y* =2awx.

* The abscissre of the common points of the curves y?=az and
22 +y?=2ax are given by z*+ax =24z, i.e., 2=0 and x=aq.

We are thus to find out the area between the curves and the ordi-
nates =0 and z=a above the z-axis (i.e., for positive values only of
the ordinates).
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The required area is therefore
a
SO (y, — ) do [ where y,>=2azr—2* and y,?=ax ]
a _——— - -
=So (n/2az—2?— \Jaz) dz.
Now, putting ¢ =2a sin?@,

R T, :
SO 2az—a* dm=sov2a sin @ ¢ns §.4a sin 6 cos 6 do

z in 401
=2 1—¢ =n? _81 -].I= 3
aSo (1—cos 40) dé=a [0 4 o= 4™

a - Ja[24]"- 2
Also, SO JVax dz= \/a[:_}.n 0= 3%

Hence, the reqnired area is

T a2 4 2(#_2).
4% 7382 F0 473

Ex. 2. Find by integration, the area of the cllipse
ax® +2hay +by? = 1. ' [ C. P. 1926 ]

Y

Yl

The equation can be put in the form
by? + 2hxy + (ax® — 1)=0.
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If y,, y, bo the values of y corresponding to any values of =z,
we have

.9 o
?/1"3/2='§ N 13z —blaz® —1) = b b~ (ab—h3)z?,

ab—h? being positive here, since the conie is an ellipse.

The extreme values of z, where the ordinates touch the cllipse, are
given by

—4.,=0, § =+ b
? 1Y - O, ’.P” T == _-—— .
oY & ab—h?

The required area can be treated as bounded by two curves, MP, L,

LP,M respectively, both satisfying the given equation, but one having
a singlo value y, for y corresponding to any value of x, and the other
also having a single value ¥, for the same value of z.

Hence, the area required

+ ~/ b + ,\/__h
ab-h? 9 ab=h? _
= o (y.—y,) de=  Ab—(ab-1%)x? dr
. b b _b
- ab—-h? - ab—h?
and putting ./ab—1n* &= /b sin 6, this becomes
mw
2 S 7, .
= ——- — 6 =T oy o*
Jab—r)_x 0 0= ygy T s
Note. The arca of tho above ellipse can also be obtainod as
follows :
Assuming the cquation of the ellipse referred to its major and

2 2
minor axes as axes of co ordinates to be :’+Z"= 1, by the theory of

v

invariants as given in Conic Sections, we know that ;1; -Bl.;=ab—-h’.
Now (from Ex. 1, Cor.. Art. 9'1) the area of the ellipse is

TaB = -- -1-——_ .
Jab—h?
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—m)3
Ex. 3. Find the area between the curve y"=((; +2 and the

asymplote.

Yl

To trace the curve, wo notice that y is 'imaginary for values of
x greater than @ or less than —a. At z=a, y=0, and for a to —a,
for each value of x, ¥ has two equal and opposite values, tending
to +oco as x approaches —a. At xz=a, the z-axis touches both the
branches. The figure is therefore as shown above, symmetrical about

the z-axis.}
The  required area between the curve and its asymptote is therefore

28 y dz= 2S ,\/ (Z__;_i)' de

and substituting z for a+2 this reduces to

2 Sza (2a— 2) ,J -2?““--—-{; dz

-23 2 °°‘°’g4asma cos 8 df
[ where 2=2a sin*6 ]

=16a? S:ﬂ cos*d do=16a? 13 =

2
843 87a’.
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9'3. Areas in Polar co-ordinates.

o
X

Let r=f(6) be a curve APB, where f(6) is supposed to be
a finite, continuous and single-valued function in the interval
a<<0<<B. The area bounded by the curve, and the radis
vectors 6 =a and 6 =g is given by the definite integral

B 8
-;—Sa r2 de, :ie., %Sa {£(6)}2 de.

Let 4 denote the area P0OA, bounded by the curve, the
given radius vector O4, s.e., 6=a, and the variable radius
vector OP at vectorial angle 6, a < 68 < 8. Then for each
value of 6, 4 has a definite value and so 4 is a function of 6.
If @ be the neighbouring point »+ 4r, 8 + 40 on the curve,
we have

44 = the infinitesimal change in 4 due to a change 46 in 6
=the elementary area POQ

and this clearly lies between the circular sectorial areas
OPN and OQM, where PN and QM are arcs of circles

with centre O.
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Thus, #7240 < 44 < % (r+4r)% 46,
i.e., Ao} < % < 3 {f(o+ 40)}°.

Now, proceeding to the limit, and remembering that
£(6) being continuous, f(6 + 40) = £(6) as 46 — 0, we get

Al =HOF, ie. b

Thus, A=% [r? do+ C=F(6) + C say.

Now, taking P coincident with 4 and B respectively and
denoting the required area AOB by 4., we get

0=F(a)+C and 4,=F(g)+C,
B,
whence 4, =F(p)— Fla)=3% | r? do.
a
Note 1. The curve APB is here assumed as concave towards O.
A similar proof with corresponding modifications holds even if the
curve be convex, or partly concave and partly convex or wavy, in fact
of any form.

Note 2. As in the case of area in Cartesian co-ordinates, the above
result can also bs doduced directly from the definition of a definite
integral as a summation. [ Sec Appendiz ]

Cor. The area bounded by the two curves v, =f, (0) and ro=Ff, (6)
and wo given radii vectors §=a and 0=4 is

1 SB (r22—7.?) do.

2 Ja

Illustrative Examples.
Ex. 1. Find:the area bounded by the cardioide r=a (1 - cos 8).

L

The curve is symmetrical about tho initial line, since replacing
@ by —0, r does not alter. Beginning from 6=0 and gradually
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increasing 6 to , the corresponding values of » are noticed, and the
curve is easily traced as below.

P

Now, the required area is evidently, from the above article,
T T
2.3 50 r? dd=a’ SO (1—cos 6)? d6=qa%.37=3ma’.

Note. It should bo noted that the area bounded by the cardioide
whose equation is r=a (1+cos 8) is also §ra’.

Ex. 2. Find the area of a loop of the curve r=a cos 20.
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In tracing the curve, we notice that as 8 increases from O to &=,
» diminishes from a to 0, the portion AP,0 being thus traced. As
0 increases from 3 to §, » is negative'throughout, and the correspond-
ing portion of tho curve which is traced is OP,B’P,0. Then as @
increases from v to w, » remains positive and the portion OP A'P,0
-of the curve is traced. As 6 increases from §r to Zm, r is again ncgative
and we get the portion OP,BP,0 of the curve. Finally, when ¢
increases from Ir to 2w, r is positive, and the portion OP,AP,0 of
the curve is described. The carve thus consists of four equal loops as

shown in the figure.

It is now clear from the figure that area of one loop

=92.area AP,0

1
=9- %S;ﬂ Tq d0=a., Sz‘” COS“ 20 d0=§1ra,".
Cor. 1llence, the ontire area of the curve i.c., the sum of the arcas

of the 4 loops=gwra’.

Note. All curves of the type r=a sin nd, or r=a cos né may he
similarly traced, by dividing each quadrant into n equal parts, and
increasing 0 successively through cach division. If r be found positive,
the traced portion of the curve will be in the same division; if » be
negalive, the traced part will be in the diametrically opposite division.
Any way, when the curve is completely traced, it will be found to
consist of n equal loops if n be odd, and 2n cqual loops if n be even.

Ex. 3. (i) Find the area of the loop of the foliuw of Descartes
x®+9*=3axy.
(is) Find also the area included between the folium and iis
asymplote and show that it is equal to the area of the loop.

(i) Transforming to corresponding polar co-ordinates by putting
xz=r cos 8, y=7 sin @, the polar equation to the curve becomes

~8a cos 6 sin § e (1)
"= cos’0+5in°0
As 0 increases from O to #r » at firs{ increases from 0 to -%a-é’
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reaching the maximum at 6 =3, and then diminishes to 0 again, thus
forming a loop in the first quadrant.

E

K

X/ N O
B
F

The required area of the loop is

= -:I im 2 _ 9q? A 5in?8 cos?e
280 "= ) (sin®6+cos*0)? ae
9“2 (= o] tﬂ dt -

= ) SO (1+t")_‘ [ putting t=tan 0 ]

_9(1 Lt SE t?_(_i_t_: =3(l;n.Lt [_ l’_: +1]
Y edoc JO(1+¢%)? 2 eroo 1+e?
=3a’.
(ii) The equation of the asymptote of the folium is
z+y+a=0. e (2)
Its polar equation is

.= —a .
! sin +4cos @ @)

Now, r=> 2, if (sin 0+cos ) = 0 i.e., if tan § >—1
i.e., if 6 - 3,

the direction of the asymptoto is § — 3.



AREAS OF PLANE CURVES 221

The asymptote intersects the two axes at 4 and B, where
OA=q and OB=a, i.e., 0A=0B.
Heonce, the area of AOAB=3a%. e (4)
Area betwoen the folium and its asymptote = triangular arca

OAB+ the limiting valuc of twice the arca between tho curve and
the asymptote in the second quadrant (from symmetry)

=442+ limiting value of twice the curvilinear arca OKPQA0
=4a*+ 20 (say). - (H)

Draw a radius vector OPQ making an angle @ with the a-axis,
such that §r < @ <wx. Suppose it cuts the curve and the asymptote at

P and @ respectively.
Lot us denote the curvilincar area OKPQ@AO by S,
tho triangular arna OQAO by S,

and the curvilinear arca OKI’0 by S,,.

S=8,-8.,.
e=Lt S=Lt (8,-8.).
6->%n -7

Now, applying the formula for arca in polar co-ordinates i.c., 3fr* d8
wnd using equations (1) and (3), we get
LT(7 s 200 {7 2 sinto cone o]
2L )0 (sin @+cos ) )o (sin®0+cos*d)* ¢

=3a° (I, 1,) say.

S=

N S . d8 _S 50070
oW (Si]'l g 4- cos 0)2 (1+ tan 6)_)

[ on multiplying numerator and deuominator by sec24 ]

=S ff [ putting ¢=1+tan 6 ]

1

1+tan @

% | =t

L 1

1
I= ‘[fma‘ 6]0 “i%¥tane 1
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Again sin?0 cos®d df _ S tan®9 sec®d d
8¢ ) (sin®6+cos¥0)? ) (1+tan®g)?
(on multiplying numerator and denominator by sec®d)

- S 3‘?‘, putting 1+ tan®0 =

11_ 1 1

T8¢ 7 3 (1+tan’e)
1 1 w 3
= . - . = e —
I,=9. 3 [l+1iu.n"'0]0 1+tan36 3.
1 L. 1 _ 3
§=,a [2+1+t.a.n0 1+ta.n"0]
1 .,  tan*0—tan 0—-2]
=92 1 Giante
= 1,2[gy . (tan 8- 1){tan 6—9) ]
2% L " (1+tan 6)(L—tan 6+ tan*0)
_1 .1 ~ tan8-2 ]
=902+ 1 tan 9+ tanio

Now, cr=Lt' S=3%a*.

HYd
6> ;

required arca=3a?+ 20 = $a?

= areas of the loop.

: . a sin’ 0 .
Ex. 4. Find the area belween the cissoid r= cos B and its

asymptote.

The curve may be traced either from its polar equation, or by
converting it to Cartesian form, and the figure will be as shown
below. The asymptote is easily found to be the line x=a, or in polar
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co-ordinates r cos §=a. Now, let OPQ be any radius vector at an angle
0 to the z-axis, intersecting the curve and its asymptote at P and Q
respectively.

—

[ where r, =0Q

Area O4QP()— 7.=0P ]
.=

(r,2~7,%) do

0( a*® e sin*é
SO (coq‘B os'-‘B) d6

w
[

:oﬁ,

(1+sin?6) da

é

0
{'0 sin 26

2 4

Now, the required area betwecen the curve and the asymptote is
clearly (there being symmetry about the z-axis, and since the direction
of the asymptote is given by 8 = 1),

a®(8 sin 20 3
It [2‘?(‘2 6", -)].—_a,ﬂ (33m)= Tma’.

0->3m
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Ex. 5. Find the area common o the Cardioide r=a (14 cos 6) and
the circle r=4%a, and also the area of the remainder of the Cardioide.

At the common point I’ of the two curves, we have
3=1+4cosf. .". cos @=3}, or, §=3%m.

The reqd. area is casily seen to be
2 {area OCP+area PQO}
©a* (1+cos 0)° dG}

o L{3 (3 1a 1y
-2{250 (2a) d0+23§
=2a3.3r+a? {E(r—}r)+ 2 (sin m —sin I7)+ 1 (sin 27 —sin 3x)}
(7T __93\ ,
(7775 )a.

Again, the area of the remaindor of the Cardioide, ¢.e., APCR

= 2-&1‘08. AI,C=2O —;—Sio" (7'12 _’.gﬂ) do

==§ im {a® (1+cos 08)*—2a*} A0

=q? S!::r (2 cos 0+% cos 20—3) do @

3 1 3 8 1
_, .N - . — []
"“{22 i’ 2 43”}

Note. The whole area of tho Cardioide is evidently the sum of
these two, i.6., =8§ma®. [ See Ex. I above, ]
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9°4. The Sign of an area.

b

In the expressionJ— 9y dx for an area, we tacitly assume
a

that the ordinate ¥ is positive throughout the range (a, b),
and that « increases from a to b, 7z.e., b > a. In this case
the area calculated by the above formula will he positive.
If however y be negative, or if & < a while y is positive,
.e., in moving along the curve from 2z=a to x*=05b, we are
moving parallel to the negative direction of the 2-axis, the
calculated aren will be negative.

Y
P
+
\.C B
Q
F1G. (i)

If therefore we proceed to calculate the total area
where, in the range (a, b), v is positive for some portion and
negative for the rest, as in the above figure (i), by using the

b
formulaj y dr, the calculated result will give us the
a

difference of the magnitudes of the two areas ACP and
CQB, which may be positive or negative or even zero if the
magnitudes of the two areas are equal.

Hence, if our object be to get the sum-total of the
magnitudes of the two areas, we should calculate the part

15
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c b
separately by formule of the type J Y da:,J' y dz, the
a (4]

results being found to be associated with their proper signs.
We shall now discard the signs and consider the sum of the

magnitudes.

-
Y s +
- )R
P
+
o AD C 8
FiG. (ii)

In each individual case therefore we should first of all
have a clear idea of the figure and the area to be calculated,
and then we should proceed. For instance, notice that in
fig. (ii) area PACR is +, area CRSD -, and area SDBQ +,
and that for the range DC of the z-axis, y is three-valued

and in calculating the area PACE we are to use one value
o
of ¥ for the portion in the formulaj 1 dz, for calculating

the area CRSD we are to use a secot:xd value of ¥ in the
formula f y dz, the upper limit d being less than ¢ for this
part, and lastly for the area SDBQ we are to use the third
value of ¥ for this part 1n the formula J: y dr. If we take

the algebraic sum of the three areas, with their proper
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signs, we get the area bounded by the curve, the z-axis and
the ordinates AP and BQ.
B
Similarly, in the formula ;j r® (6 in polar co-ordinates
if 8 < a, 2.e., if 0 diminishes in moving along the curve from
0 =a to 8 =4, the calculated area will be negative. Then

0

area, OPR is +, arca ORS is —, area 0OSQ +, the area
bounded by PRS® and the radii vectors OP, OQ, being
their algebraic sum. Also for the range SOR, {or each
value of 6, r has three values, and we must use the right
value in each case for that part when moving along PR or
along RS or along SQ in the expression r*d6.

9'5. Area of closed curves.

F1aG, (iii)



228 INTEGRAL CALCULUS

In & closed curve given by Cartesian equation, clearly for
each value of  there will be two values of 9, say ¥, and ¥,
(See Ig. 1). The extreme values of ¥, say @ and b, are

b .
obtained by putting ¥1=v95. Now, J (y1—y4) dz will give
a

the positive value of the required area provided & > a and
Y1 > Y3 This amounts as it were, to the determination
of the area hetween two curves having the same equation
as the given one, but % being single-valued in each, the
proper value being chosen for each part. The method has
been illustrated in lx. 2, Art, 9°2.

In polar curves, if the origin be within the curve,

2w
( See Fig. 2), ; Jo r® d0 gives the desired area.

If the origin be outside, corresponding to each value of 6
there are two values of », say ry and 7, (See Fig. 3). The
extreme values of 8, namely a and B8, are obtained by putting
ri=rs. Now,if r; > ry and § > a, the positive value of

B
the area will be given by the expression i J' (ry% —75%) do.
-t a
.. 1 [ o
In fact the area OAPB is given by -, r+- df and

a
aQ
i3 positive, while ;JB ro2 dO gives the area OBQA, with
negative sign, the algebraic sum of the two giving the

desired area.

In the case of closed curves there is another method of
calculating the area. Let x, ¥ be the cartesian co-ordinates
of a point on the curve whose polar co-ordinates are r, 6.

Then =7 cos 8, y=1r sin 6.
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If now ¢ be a single variable parameter in terms of
which 2z, ¥ and therefore r, 8 of any point on the curve can
be expressed, we have,

d;z_:=d'r cos 0 — in 0 6
dt dt TenY
dy _ar o
di di sin 04+ 7r cosodt

o _ A2 _ 2 dO
dt~ Y dt dt
Hence, the area which is expressed by the integral % [»* d6,
can as well be expressed by the line inteyral

1((adz g
3 S Xqt " Yy 4t
along the curve, the limits of ¢ for the closed curve being
such that the point (z, ) returns to its initial position.
The rule of signs for the area i1s that the above expression

is positive when the area lies to the left of a point describ-
ing the curve in the direction in which ¢ increases.

9°6. Approximate evaluation of a definite integral:
Simpson’s rule.

In many cases, a definite integral cannot be obtained
either because the quantity to be integrated cannot be ex-
pressed as a mathematical function, or because the indefinite
integral of the function itself cannot be determined directly.
In such cases formul® of approximation are used. One
such important formula is Simpson’s rule. By this rule
the definite integral of any functiom (or the area bounded by
a curve, the z-axis and two extreme ordinates) is expres;sed
in terms of the individual values of any number of ordinates
within the interval, by assuming that the function within
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each of the small ranges into which the whole interval
may be divided can be represented to a sufficient degree of
approximation by a parabolic function.

Simpson’s Rule: An approximate value of the definite
integral '

b
S y dx where y=f(z)
a
=1h[(y;+ym+1)+2(ya+ys+ - +yn-1)
+4(Y2+Y4+"'+Y2n)]

where h=%;l-q' and i, ¥2, ¥s,... are the values of ¥ when

z=a,a+h at?2hn,......
In words, the above rule can he written as

4k [sum of the extreme ordinates + 2.sum of the
remaining odd ordinates +4.sum of the even ordinates].

Let PQ be the curve y=f(z) and PL, QM be the
ordinates z=a, z=b. Divide the interval LM into
2n equal intervals each of length % by the points Ny, N...

Y

0 L N, N; Ny Nppn M X

so that h==b-;nq and 1ot PgN,, P3Ng... be the ordinates

at Ng, Ns,... . Then PL='II1; P3N3=’yn, P,,Ns=y3...
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Through PPy,Ps draw a parabola having its axis parallel
to y-axis, and let its equation referred to parallel axes
through N, (a + h, 0) be
y=a+bx+cx®. - (1)
Then the area bounded by the parabolic arc PPgPy,,
the ordinates of P, P; and the z-axis (such to be called
hereafter shortly as area under the parabola)

=j’:h(a,+bm+cm2) de=2h (a + 3ch?). - (9

P(=1h, y4), Py (0, 472), P5 (h, ys) are points on the
parabola (1),

yi=a-bh+ch® ya=a, ys=a+bh+ch?
from which we get a=v,, c=y1 "223--*"’3-

from (2), area under the parabola =34 (y, + 4ys +9s).

Now, area of the lst strip (ordinates ¥4, ¥a, ¥s) under
the curve wy=f(x) is approximately = area under the
parabola

=%h ('!11 + 4y, +’!Is)-

Similarly, area of the 2nd strip (ordinates ¥s, ¥4, ¥s)

under the curve is approximately =3k (ys +4y.+¥s);

area of the 3rd strip (ordinates ¥, ¥, ¥7) under the
curve is approximately =4k (y5 +4ye + 1) ;
and area of the nth strip under the curve is approximately
=4h (Wan-1 +4Ygn + Yant 1)-

b
summing all these, area under the curve i.e., I 9 de
a

is approximately l
=%h [(?I:. + ?/sn+1) + 2(’.'/3 +ys o+ ‘.'Izn—:.)
+ 4('!/2 Yyt +'.’lsn)]-
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Note. It should b» noted that the closer the ordinatcs, the more
approximate is the valuo.

Simpson’s rule is sometimes called ‘Parabolic rule’.

Ex. Given ¢®°=1, ¢2=2'72, ¢?=7'39, ¢>=20°09, ¢*=54'60; verify
Simpson’s rule by finding an approximate value of S: e dxz, taking
4 equal intervals, and compare it with its exact value.

Here, a=0, b=4, n=2, h=1, y=f(z)=¢".

by Simpson’s rule we get the approximate value

3h [(y,+9.)+2y, + 4y, +9.)]
=35 [(e°+e*)+ 2%+ 4(c? +¢2))]

=3h [1454'60+2 X 7'39 + 4(2°72 +20°09) ]
=53'87.

4
Exact value= [e“ ]0 =¢4—~1=5460 —1=5760.

error = 5387 —53'60="27 approx.

EXAMPLES IX

1. TFind the area of a hyperbola zy=c* hounded by
the z-axis, and the ordinates £ =a, 2=10.

2. Yind the area of the segment of the parabola
y=(zx— 1)(4 - ) cut off by the z-axis.

3. Find the area bounded by the z-axis and one arc
of the sine eurve y =sin z.

4. In the logarithmic curve ¥ =ae®, show that the area
hetween the z-axis and any two ordinates is proportional
to the difference between the ordinates.

5. Pind by integration the area of the triangle bounded
by the line ¥ = 32, the z-axis and the ordinates £=2. Verify
your result by finding th. area as half the product of the
base and the altitude.



AREAS OF PLANE CULVES 233

6. Show that the area bounded by the parabola
~JZ+ v = AJa, and the co-ordinate axes, is 3a”.

7. Show that the area bounded by the semi-cubical
parabola ¥* =ax®, and a double ordinate, is & of the area of
the rectangle formed by this ordinate and the ahscissa.

8. Show that the area of
%

(i) the astroid w%+?j' =0° is §na® ;

x § Y # .
(ii) the hypo-cyeloid (a_) +( b) =11is #nabd ;
2 2 2 _ 72)2
(iii) the evolute (aar)at+(by)‘§*—-(a.2 ~1%)% is %u(a __cil? )
9. Find the area enclosed by the curves : (@ > 0)
G) 2(1+¢%)=1-¢; y(1+¢*)=2.
(ii) =8 cos ¢t; =2 sin ¢.
(iii) £=a cos t (1—cos t); v=a sin ¢ (1 - cos t).
(iv) =a (2 cos t+cos 2t); v=a (sin ¢ + sin 2f).
10. ¥ind the area of the segment cut off from 7% =4x
by the line ¥ = 2z.

11. Find the area bounded by the curve ¥* =2° and the
line ¥ =z.

12. Tind the area of the portion of the circle z2+y* =1,
which lies inside the parabola ¥* =1 —z.

13. (i) Show that the area bounded by the parabolas
y® = 4a2 and z° =4ay, is 3%a’. [C. P. 1928 ]

(ii) Find the area bounded by the curves
y?—-4x-4=0,and ¥*+4x-4=0.
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14. Prove that the curves ¥? =4z and 2° = 4y divide the
square bounded by =0, z=4, y=0, =4 into three equal
areas.

15. The curves ¥ =4z® and ¥*® =2z meet at the origin O
and at the point P, forming a loop. Show that the straight
line OP divides the loop into two parts of equal area.

16. (i) Find the area included between the ellipses
2%+ 2% =a% and 22* + 9% =a’.

(ii) Show that the area common to the two ellipses

2 2 2 ]
T +%.=1 and :1:2+Z-'§=1,(m>b)

ot pET !
. - 2al.
is  2ab tan 1 &'2 f)bg'
17. Find the area of the following curves: (a > 0)
(i) a®y?=a’z® —2*. [P P.1935]

(i) (v—2)* =a®—2®.
[ See Ez. 2, Art. 9°2 ]
(iii) (z® +y°%)* =a® (z* - ¥®).
(iv) (2% +4°%)® =a’z? +biy®.
[ Transform (iii) and (iv) to Polar ]
(v) z=a cos 6+hsin 6, y=a’ cos 6 + &' sin 6.
(vi) z=a sin 2¢, y=a sin ¢.
18. Find the area of the loop of each of the following
curves: (a>0)
(i) ¢® =2z -1)°.
(ii) ay® =2%(a - z).
(iii) ¥ =23z +a). [C. P. 1935 ]
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. 1-1¢2 1-1¢°
(iv) =] 52 ?/=t'i"+’§2' (-1<€t<1)

(v) z=a(1-1%), v=at(1-t%), (-1t < 1).

19. Find the area of the loop or one of the two loops
{where such exist) of the following curves: (a > 0)

() z(@® +v%)=alz® - u*).
(i) v%(a® +2®)=2%@a® - 2®).
(iii) %0 —z)=z*(a +z).

(iv) ¥® =2*(4 - 2%).

(v) 22 =9%(2-).

20. Find the whole area included between each of the
following curves and its asymptote : (a > 0)

(1) 2%y =a®(y® - 2?).
(i) y2%(a—z)==z°.

(iii) ¥%(e - 2)=2%(a + z).
(iv) z2y® + a®b® =a’y>.

(v) zy® =4a*(%a — ).

21. Find the area of the following curves : (a > 0)
(i) r=a sin 6.
(i) 2 =a?® sin 20 ; r* =a® cos 29.
(iii) »%(a® sin%6+b% cos®6)=a®b?.
(iv) =a sin 36.
(v) r=a (sin 26 + cos 26).
(vi) »2=a? cos®6 + b sin’e.

(vii) r=3+2 cos 6.
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22. Show that

(i) the area included between the hyperbolic spiral
r0=a and any two radii vectores, is proportional to the
difference between the lengths of those radii vectores.

(ii) the area included between the logarithmic spiral
r=e* and any two radii vectores, is proportional to the
difference between the squares of those radii vectores.

28. TFind the area of a loop of the curves: (a > 0)

(i) z* +y*=2a%zy. [C. P. 1932 ]
[ Transform to Polar ]

(ii) »*=a? cos 26. [ C. P.1982,°38 1

(iii) »* =a® cos 40. [ C. P. 1924}

24. Find the area of the ellipse
92 +4y® - 18z - 16y —11=0.

25. If for the curve z(z® +92%)=alz® - 92, (a > 0) 4 bhe
the area between the curve and its asymptote and I be the
area of its loop, show that 4 + L = 4a>.

26. Show that for the curve
y*a+z)=2%*Ba—-2),(a>0)
the area of its loop and the area between the curve and its
asymptote are both equal to (3 ./3)a®.

27. Show that the area included between one of the
branches of the curve z’y*=a*@®*+92%)(a > 0) and its
asymptote is equal to the total area of the curve (z®+ y?)*
=a*(z®-9*%), (a>0).

"28. If p=f(r) be the equation of a curve, show that its
area = __J'J_JQ?‘__ ar

taken between the proper limits.
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29. If p=f(y) be the equation of & curve, show that its

_1 a*p
area = 9 J. P (p+ Ay dy

taken hetween the proper limits.

30. (i) Show that the sectorial arca of the equi-angular
spiral p =7 sin a included between the two radii vectores

r. and 7g, is 3(r,% —r.%) tan a.
(ii) Show that the arca of the lemniscate a’p=r®
is a®,
[ For half a lonp r varics from 0 to a ')

31. Find an approximate value of

0-2 1
j’ . (1 - 22%)* dr, taking 2 cqual intervals.

Given f(0'1)=099334, f(0°2) =09725 where
nE
flx) =(1-22r%)",

32. TFind the approximate value of

9
J (?’- taking 10 equal intervals, and ecalculate
;7

the error.

Given f(1'1)="90909 £(1°6) ="62500
f(1'2) ="83333 F(1'7) ="58824
£(1°8) ="76923 f(1°8)="55556
f(1°4) ="71429 £(1°9) ="52632

f(1°56) ="66667

where f(z)= ,],, ‘
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33. Evaluate
8T
J o (2 +sin ) dz, using 4 equal intervals,

given when z=0° 0’, 22° 30’, 45° 0, 67° 30’, 90° 0’,
V(2 +sin x)=1'414, 1'544, 1'645, 1'710, 1'732.

34. Obtain an approximate value of

1+
obtain an approximate value of n correct to four places of

1
Jo de ; taking 4 equal intervals, and hence

decimals.

35. A river is 80 {t. wide. The depth ¢ in feet at a
distance z f. from one hank is given by the following table.

z=0 10 20 30 40 50 60 70 80
d=0 4 7 9 12 156 14 8 3

I'ind approximately the area of the cross-section.

36. Use Simpson’s rule, taking five ordinates, to find
approximately to two places of decimals the value of

ﬁ J(x-1/2) de.

ANSWERS

1. ¢ logf:- 2. 43. 3. 2. 9. (i) . (ii) Gr.

(iii) 27aZ. (iv) 6ra®. 10. §. 11, 39, 12, dr+4%.
18. (i) 45 16. (i) 2 20? sin"? 53- 17. (i) 407 (i) ma™.
(iii) a2. (iv) 3m(a?+02). (v) n(ad’—a'b). (vi) $a’.

18. () & () %a®. (i) fat. (iv) 2~3. v) %al.
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19. (i) 2a*(1—1x). (ii) (3w —1). > (iii) 2a2(1~1x). (iv) A% (V) 2%
20. (i) 4a’. (ii) 3wa’®. (iii) 2a%(1+ ). (iv) 2wab. (v) 4ma®.

21. (i) }mra?’. (ii) a®; a®. (iii) wabd. (iv) $wa®.
(v) ma’. (vi) er(a."‘+ b2). (vii) 11w.

23. (i) }ra’. (i) 3a2.  (iii) 3a>. 24. Gr.  31. 0°1982.

32. °69315 ; crror="00001. 33. 2'5646. 34. 3°1416.

35. 710 sq. ft. 36. 0°'84.



CHAPTER X
LENGTHS OF PLANE CURVES.

[ Rectification 1*

10'1. Lengths determined from Cartesian Equations.

We know from Differential Calculus that if s be the
length of the arc of a curve measured from a fixed point 4
on it to any point P, whose Cartesian co-ordinates are (a, b)

and (r, y) respectively, then

Is C e g o 2
é:;=scec v= /1 +tan’y =»\/1+(Z:) ’

v denoting the angle made by the tangent at P to the z-axis.

Thus, we can write
N2
=J\/1 + (’!‘-’4) dz +C,
dx

dy . : X
where ffg is expressed in terms of x from the equation to

the curve, and C is, the integration constant. If the indefi-

nite integral J’;\/ 1+ d” dz be denoted by F(z), then

since s=0 when P comcldes with A4, 7.e., when x=aq,

we geb
0 =F(a) + C, whence C = — F(a).

Thus,
o= le)- @)= " o/1+(3)" ax.

*The process of finding the length of an arc of a curve, 4.e., ‘of
finding a straight line whose length is the same as that of a specified
arc’, is called Rectification. For the definition of the length of an arc
of a curve, sec Authors’ Differential Caleulus, Appendix.




LENGTHS OF PLANE CURVES 241

Hence, between two points having z, and z, as absciss:z,
the length of the curve is given by

msu =[N (B o [ (B)
-$ Jii@j dx. - (1)

: : du, ST S
If 1t be convenient to get dz and accordingly dy ip

terms of ¥, instead of x, from the equation to the curve, we
can use the result

‘1b=,\/1+ )

whence the length AP is given by
{0 e
Sb 1+( dy dy,
dx . .
where dy is expressed in terms of y.

Also the length of the curve between the two points
whose ordinates are ¥, and y, respectively will be

SN CDV/7ve [ P

If both 2 and ¥ are expressed in terms of a common
variable parameter ¢, and so s is also a function of ¢, we can

write

ds _ds dx /\/1+ dq)ﬂ dx
dt  dz dt dzl dt

- ,\/(’4_@)“2‘;'('4&'“. [ dodude]
dt dt T odt dzdt

16
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Thus as before, the length of the curve between two
points on it for which ¢=%, and {=1{, respectively will be

SRRt T

All the above cases can be included in a single result in
the differential form
ds= Jdx®+dy?, - e (4)
where the right-hand side is expressed in the differential
form in terms of a single variable, from the given equation

to the curve. This, when integrated between proper limits,
gives the desired length of the curve.

Note. In the above formulwm (1), (2) and (3), it is assumed that

dy dx, dx dy

dx dy at ' at Pre all continuous in the range of integration.

Ilustrative Examples.

Ex. 1. Find the length of the arc of the parabola y* = dax mcasured
from the vertex to one extremity of the latus rectum.

Here, 2y gi’“““' oty 31%7‘ Jii[«/ 2

The abscisse of the vertex and one cxtremity of the latus rectum
are 0 and a respectively, Hence, the required length

~(e day\* ='“J£*§
; SO'\/1+(da:) dz 30 x az

_Sa r+a

PRI

0 Nz(z+a)™”
[\/m.t?)"'a log ( Wz + ~’(m+a)]:

ai N2 +1og (1+ N2)}.
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Ex. 2. Determine the length of an arc of the cycloid x=a(0 +sin 8),
y=a(l—cos 0), measured from the vertex (i.e., the origin).

Here,

VR

=gq a/(1+cos 6)®>+sin?0=2q cos 0.

Also at the origin, 6=0. Hence, the required length, from =0 to
any point 0, is

0
s=§0 2a cos 30 dd=4da sin %60.

Cor. 1. Since at the extremity of the cycloid (d.e., at the ousp)
y=2a, we have 0=m there. Thus, the length of a complete cycloid
being double the Ilength from the vertex to the extremity, is

2.4a sin == 8a.
Cor. 2. s2=16a? sin?}0=8a.a(1~ cos 0) =8ay.

Ex. 3. Find the whole length of the loop of the curve

3ay? =x(x—a)?.

X O A X

YI

We notice here that, for negative values of z, y is imaginary, and
so there is no part of the curve on the negative side of the z-axis.
Again, at the points where z=0 and w¢=a, we have y=0. Between
these two points, for every value of x there are two equal and opposite
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values of g, a loop being thereby formed. For each value of z greater
than a, y has two equal and opposite values, and with x increasing,
9y continually increases in magnitude. The curve is thus traced as in
the adjoining figure. The cxtremities of the loop are given by 2=0
and z=a.

Now from the oquation to the curve,

Bay d ’ =(t—a)?+2(z—a)=(x—a)(8r—a) ;
t_i§ AT (x— a)_“(3w a)?
dx /\/1 +(da:) '\/1 36a3y?

___)\/1+(3}r—a)’= 3v+a
12azx 2 N3ax

the half length of the loop is

a 3z+a 1 [ 2 ]a
= 3.2,% 0.
So 9 iz =2 w3a z*+a.2 0% 0

= s [2“;] =3 a.

The whole length of the loop therefore, from the symmetry of the
curve= % \/3a.

10°2. Lengths determined from polar equations.

From the formulae

_.. a6 _dr . _ d6
ta,nd>—'rdr cos ¢ ds sin ¢ 'rdn

)

in Differential Calculus, where s represents the length of
the arc of a curve from any fixed point 4 of it to a variable
point P whose polar co-ordinates are 7, 8 and ¢ denotes
the angle hetween the radius vector to the point and the
tangent at the point, we can write

lg—b=cosec b= ~/1+cot2d)=,\/1+ 1( )

ds J 2 (d" : e (i
whence T r< + 20 (i)
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Again,
ds _ [ o (d6)® .
gy = sec b= ~/1+ta,n"’¢a—~/1+r“ ((—Z_;') - e (i)

From (i) and (ii), the length of an arc of the curve can
be expressed in either of the forms

WS- 9

1

r, s=S: ,\/1+r2(%g)2 dr,

where r,, 8, and 7., 0, are the polar co-ordinates of the
extremities of the required arc. In the first form, r as also

gz are expressed in terms of § from the given polar equa-
. dae . .
tion to the curve. In the second form, dr 1B expressed In

terms of 7.

Both (i) and (ii) can be combined in a single differential

form,

Note. It is assumed in the above formul® that gg’ gg aro conti-

nuous in the range of integration.

Ex. Find the perimeter of the Cardioide r=a (1—cos 6), and show
that the arc of the upper half of the curve is bisected by 6 =3,

Here, since r=a (1—cos 0), g;=a sin 0.
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Hence, the length of any arc of the curve measured from the origin
where 6 =0, to any point, is given by

i/ ) o

[ - SR
=SO Na?(1—cos 6)*+a? sin?0 do

_(¢e . 0 . 0]0__ ( 0
—802a31n2d0—-4a[ cos— o-—4a, 1 cosz)

-

Thus, the lengtih of the upper half of the curve, which clearly extends

from =0 to 0=m, is 4a (1—cos &r)=4a.
[ Seo Fig., Ex. 1, Art. 9°3 ]

The whole perimeter is clearly double of this, and thus=_8a.

Again, the length of the curve from §=01o @=3r is 4a (1L —cos i)
=2g, and so the line 6=3r bisccts the arc of the upper half of the

curve.

10°'3. Lengths determined from pedal equations.
From the formuleae g: =¢08 ¢ and » =7 sin ¢ in Differen-
tial Calculus, we can write

as 1 _ 1 1 _ r |
dr cos¢ J1-sin*p Jl_p? Nr?—p*
1,2

whence the length of an arc of the curve extending from
r=9, to r=7r, will be given by

S" r dr
s!.

where p is to be replaced in terms of » from the given

pedal equation to the curve.

Ex. Find the length of the arc of the parabola p*=ar fromr=a
to r=2a.
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The required length is given by
s= 2q _radr _:__=Sf-’a » dr
a AJr*=»? Ja AJri-ar
-~ o ) o 2
=l J1~“ ~ar+a log { Jri+ .Jr—a)] :
=a nN2+alog (N2+1)=a [ N2+10og (1+ /2)].

10°'4. Length of an Arc of an Evolute.

We know from Differential Calculus that the difference
hetween the radii of curvature at two points of a given curve
is equal to the length of the corresponding arc of its evolute.

Y

(0 X

Thus, if p1 and p2 be the radii of curvature at > and @
of a given curve PQ, p and q being the corresponding points
on the evolute, the length of the arc pg of the evolute
=P1L~ Pa.

In fact p, q are the centres of curvature and so Pp and
Qg are the radii of curvature at P and @ of the curve PQ,
and if the evolute be regarded as a rigid curve, and a string
be unwound from it, being kept tight, then the points of the
unwinding string describe a system of parallel curves, one
of which is the given curve P, of which pq is the evolute.
PQ is called the involute of pg.
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Ex. Calculate the entire length of the erolute of the ellipse
[C.P. 1918 ]

b

a, b, a’, b being the cenircs of curvature of the ellipse at 4, B,
4’, B’ respectively, the cvolute, as shown in the figure, consists of
four similar portions, the portion apl corresponding to the part APD
of the given ellipse.

Now, from Differential Calculus, it is known that at any point on

the ellipse, the radius of curvature

a?b?
P='Pa ’

where p is the perpendicular from the centre on the tangent at the
point.

Thus, the length of the arc apb of the evolute
aaba a'lbs an bﬂ
=PB_PA== b3 —~-ar=-lT—-do
Hence, the entire length of il . evolute of the ellipse

=4(a_.’_b_’).
b a
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10°5. Intrinsic Equation to a Curve.

If s denotes the length of an are of a plane curve
measured from some fixed point 4 on it, up to an arbitrary
point P, and if v bhe the inclination of the tangent to the
curve at I to any fixed line on the plane (e.g., the z-axis),
the relation between s and v is called the Intrinsic Equation

of the curve,

It should be noted that the intrinsic equation of a curve
determines only the form of the curve, and not its position
on the plane.

(A) Intrinsic Equation derived from Cartesian Equation.

Y

OI X
Let the Cartesian equation to the curve he ¥ =fzx).
Then y denoting the angle betwecn the tangent at any

point P and the z-axis,

tany==r@) .. e ()

Also, s=arc AP =J:~/ 1: (gg)_z dx
j VI GF do= P sy - ()

‘@’ denoting the abscissa 4, and ‘z’ that of P,
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Now, the z-eliminant between (i) and (ii), (which will be
a relation between s and v) will be the required intrinsic
equation of the curve.

If the equation to the curve be given in the parameiric
form z=f(t), y = ¢(t),
we can write

_dy_dy [dz_ 1), o
tany= 1. dt/ dt (2 (i)

. _ ¢ {dx\2 Ey 3
o, = [/ (G5) + (3)" o
-], O P a
=F(t) say, .es (ii)

where ¢, is the value of the parameter ¢ at A.

The ¢-eliminant between (i) and (ii) will be the required
intrinsic equation to the curve.

(B) Intrinsic Equation derived from Polar Equation.

Let » =f(6) be the ,.olar equation to a curve.

Let ¢ denote the angle between the tangent and the
radius vector at any point P (r, 68), v the angle made by the
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tangent with the initial line, and s the length of the arc AP
where 4 (a, a) is a fixed point on the curve.

Thc;n, tan ¢ =7 30 ;g?ﬂ)) ®
—ote (i)
_ [ @ d

and =] ,,'s/ (d;) a8
Zra JiF O} +{/(0)}* d6=1(6) say. (iii)

Now, eliminating ¢ and 0 between (i), (ii) and (iii), we
get a relation between s and v, which is the required
intrinsic equation of the curve,

(C) Intrinsic Equation derived from Pedal Equation.

Let p=f(r) be the pedal equation to the curve.

Then, as in Art, 10°3,

T rdr r r dr i .
et = - —1(' -) ¢ . ees
vl MNE /R R T
Also, from Differential Calculus, p denoting radius of
ds _ p=r dr -t - (ii)
dv dp f'(r)

curvature,

Eliminating » between (i) and (ii), we get a relation of
the form

ds _ dy _ 1 . =j’_c_l-§
PP TP SR A
which, when the right side is integrated, will give the
required intrinsic equation.
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Illustrative Examples.
Ex. 1. Oblain the intrinsic equation of the Catenary y=c cosh '

in the form s=c tan y.
Here, tan y="%"—=sinh - (i)
’ dx ¢
Also measuring s from the vertex, where x=0,
(%./1 _d'.i/)"’
s SOVLF(CZ::: de
x ,
=S ,\/1+sinh"'nd-’ﬂ
0 c
==S  cosh ¥ d.x:=[c sinh m]z= ¢ sinh T -
0 c ¢ Jo c

Hence, from (i), s=c tan V.

Ex. 2. Oliain the intrinsic equation of the cycloid
——

z=a (0+sin 0), y=a (1—cos 0)

taking the vertex as the fixed point and the tangent at that point as the
fized line. [ C. P. 1928, 32 ]

As shown in Ex. 2, Art. 10°1, the length of the arc of the above
cycloid measured from the vertex is given by

s=4a sin | (i)
_dy_dy [dx_ asinf _ v
Also, tan V=da=do dé  a (1+ cos 0)-ta.n 2

Henu 3, from (i), s=4a sin ¢

Y=

el

which is the required intrinsic equation.
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Ex. 3. Find the intrinsic equation of the Cardioide
r=a (I—cos 6),

Lhe arc being measured from the cusp (i.e., where 8=0),
[ C. P. 1937, '49 ]

Here, Yy=0+¢ e (1)
dg 1-—cos @ ]
and tan ¢, d.e., » T 3= a0 =ian 9"
Fa ¢=&0. eee e N (2)

Also by the Ex., Art. 10'2, we have,

s-—S A/"' +(dr df =4q (l—cosg)- e (3)

Since, from (1) and (2), y=60+30=30, i.e., 0 =%y,
from (3), s=41 (1—cos 4¥),
the required intrinsic equation.
Ex. 4. DIind the Carlesian equation of the curve for which the
inirinsic equation is s=ay.
dz _dz ds

Here, dy~ ds ‘d " =cos ¥.a.
dr=acosy dy. .. x=asiny+ec. e (1)
. dy_dy dc_ .
Again, ay—ds dy =sin y.a.
S o dy=asinydy. .. y=—acosy+td. - (2

From (1) and (2), eliminating ¥, we get
(z—c)%2+(y—d)®=a?, the required Cartesian equation.

EXAMPLES X

1. PFind the lengths of the following :

(i) the perimeter of the circle z®+y*=a? ;

T
(ii) the arc of the catenary y= g—(g“+e ") {from

the vertex to the point (z,, ¥.) ;



254 INTEGRAL CALCULUS

(iii) the perimeter of the astroid mi + y§= a,§L ;
[ C. P. 1941, 44 ]

(iv) the perimeter of the hypocycloid ( Z )& + ( "'b’ ) =1

(v) the perimeter of the evolute (az)?/®+(dy)2/®
=(a2 - b2)2 /8,
(vi) the arc of the semi-cubical parabola ay? =22 from

the cusp to any point (z, ¥). [ C. P. 1924 ]

2. If s be the length of an arec of 3ay®==z(x-a)?
measured from the origin to the point (z, y), show that
3s% =42% + 3y°,

3. Show that the length of the arc of the parabola
y* =4ax which is intercepted between the points of inter-
section of the parabola and the straight line 3y=8z is
a(log 2 + 18).

4. Show that the complete perimeter of the curve

.'z:=l---t:' Y= 3¢ 2 18 2n.
14+ Yo 14¢"

5. If for a curve
x sin 6 +y cos 8=F"(0),
and x cos 86—y sin 8=71"(8),
show that s=f(0)+r" (6) +e¢,
where ¢ is a constant.
6. Find the length of the arcs of the following
curves :

' = o0 o

® m__eg sin 0 } from 6=0 to 6= %n.
y=e cos O

(ii) £=a (cos 6+ " sin 6)

y=a (sin 6— 0 cos ) } from 6 =0 to 6 =6,.
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(iii) 2 =c sin 20 (1 + cos 26) }
y=¢ cos 20 (1 — cos 26)
from the origin to any point.

7. Show that the perimeter of the ellipse z=a cos 6,
y=>b sin 0, is given by

1)2e® ;:_3)295 1.--.3.-@)"‘ e’ _ ..
2““{1 (2 1 " \24) 3" \2ss! 5 }

8. Compare the perimeters of the two conics
2 2 2

z” Y _ z? Yt
g g =1and ga+o =1 [ C. H. 1925 ]

9. Find the lengths of the loop of each of the following
curves :

() 9y =(z+ Tz +4)°; [ P. P. 1934 ]
(1) z=1t> y=1t— %>,

10. Find the lengths of the following :
(i) a quadrant of the circle r =2 sin 0 ;

(ii) the arc of the parabola {1+ cos 8)=2 from 6 =0
to 0 =1%n;

(iii) the arc of the equi-angular spiral 7=aelcot®

between the radii vectores 71 and 7;.

11. If s be the length of the curve » = tanh 46 between
the origin and 6=2r, and 4 the area between the same
points, show that 4=a (s — an). [ C. P.1931]

12. Show that the area between the curve

the z-axis, and the ordinates at two points on the curve,
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is equal to a times the length of the arc fterminated by
those points. [ Nagpur, 1986 ]

13. Show that in the astroid m§+ 'y&'—’a&,
%

(i) secz
(ii) p®+4s% =6as,
s being measured from the point for which 2 =0.
14. Show that
(i) in the cycloid z=a (6 +sin 6), ¥ =a (1 - cos 0),
p2+s2=16a",

the arc being measured from the vertex (where 6 =0) ;

[ C. H. 1933 ]
(ii) in the catenary ¥ =c¢ cosh “:' ;
y2=cp=c"+3s°>,
the arc being measured from the vertex ; [ C. P. 1930 ]

(iii) in the cardioide r=a (1+ cos 8), s+ 9p% =16¢>,
the arc being measured from the vertex { 7.e., 6=0).

15. Show that the length of the arc of the hyperbola
2y =a® between the points £=>5 and z=c is equal to the
arc of the curve p® (a* +7*)=a*r® between the limits r =5
and r=c.

16. Show that the length of the arc of the evolute
97ay® = 4(x — 2a)® of the parabola %® =4ax, from the cusp
to one of the points where the evolute meets the parabola,

is 2a (3 /3 - 1).
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17. Find the intrinsic equation of each of the following
curves, the fixed point from which the arc is measured
being indicated in each case :

(i) the parabola 1% =4az ---:-- (vertex),
(ii) the astroid mg J%—a% ------ (one of cusps),
(iii) the semi-cubical parabola ay? =x3 ------ (cusp),

(iv) the curve ¥ =a log secz -+-+++ (origin),

(v) the equi-angular spiral »=ae’? ¢°t¢ ... (point a, 0),

(vi) the involute of the circle, viz.,

- cos™?t f:' -+ (point a, 0).

18. Find the intrinsic equation of each of the following
curves :

(i) p=7r sin q,
(ii) p?=r%-a®
19. Find the intrinsic equation of the curve for which
the length of the arc measured from the origin varies as the
square root of the ordinate. Also obtain the Cartesian

co-ordinates of any point on the curve in terms of any
parameter. [C. P. 1931 ]

20. If s=c tan v is the intrinsic equation of a curve,
show that the Cartesian equation is y =c cosh aé » given
that when =0, =0 and ¥ =c. [C. P. 1926 ]

17
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ANSWERS
1. (i) 27a. (ii) 3a (ea‘:'l —e—%l_). (iii) 6a.
o e(5-2)
o go{(a+2) -1}
6. (i) 2™ —1). (ii) 3a0,>. (iii) %c sin 36,
8 1:2. 9, (i) 4 /3. (ii) 4 /3.
10. (i) 3wa. (ii) ~N2+1log ( N/2+1). (iii) (ro—r,) sec a.
17. (i) s=a cosec Y cot ¥+a log (cosec ¥y+cot ¢). (ii) s=3a sin?y.
(iii) 27s=Ba(sec®y —1). (iv) s=a log tan (&y-+ 1x).
(v) ¢=n sece afel¥a)vota_ 4y (vi) s=3ay>.
18, (i) =¥ CObe, (ii) s=3ay®.

19. s=4a sin ¥, x=a(0+sin 0), y=a(l— cos 6).



CHAPTER XI

VOLUMES AND SURFACE-AREAS OF
SOLIDS OF REVOLUTION

11°1. Solids of revolution, the axis of revolution
being the x-axis.

Let a curve LM, whose Cartesian equation is given,
y=f(z) say, be rotated about the z-axis, so as to form a
solid of revolution, and let us consider the portion LIL/M'M
of this solid bounded by z=2z,; and z=2z, respectively.
We can imagine this solid to be divided into an infinite
number of infinitely thin circular slices by planes perpendi-
cular to the axis of revolution OX. If PN and P'N’ be

two adjacent ordinates of the curve, where the co-ordinates
of P and P’ are (z, v) and (z+ 4z, ¥+ Ay) respectively, the
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volume of the corresponding slice, which has thickness
4z, is ultimately equal to ay? 4z.*

Hence, the total volume of the solid considered (bounded
by £=2, and £=2,) is given by
Xa
vZ dx.

X1

V=Lt OEn?/“'Aa:"nS

Ac>

Again, if 4s he the element of length PP’, s being the
arc length measured up to P from any fixed point on the
curve LM, the surface-area of the ring-shaped element
generated by rotating PP’ is ultimately 2ny.4s.

Hence, the required surface-area is given by

82
S =‘{1t . 3(2nyAs)=2=x g y ds.

< 81

[ s1, 2 being the values of s for the points L, M ]

X2 ) dv\2
=27‘S Y'\/l'l'(—’-r) dx.
X1 dx
Cor. 1. When the axis of revolution is the y-axis, and we consider
the portion of the solid bounded by y=9, and y=y, respectively,

V== Sn x? dy,
¥1

and S=2r S.’ X da=2r Sh x,\/1+(d—x)’l dy.
81 ¥1 dy

Cor. 2. Even if the curve revolved be given by its polar equation
(the awis of revolution being the inmitial line), and the portion of the

*Strictly, the volume of tho slice lies between 7y, ? Az and ry,? Az
where 9, and y, are the greatest and the loast values of ¥ within the
range PP, and thus equals 7y? Az, whore y lies between g, and gy, and
is thus the ordinate for so.ae point within the range PP’ (not neces-
sarily of P). Thus, Lt 2y® Az=[y? dz. [ See Art. 6’2, Note 2. ]
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volume considered be bounded by two parallel planes perpendicular
to the initial line, we may change to corresponding Cartesian co-
ordinates, with the initial line as the z-axis, by writing x =7 cos @,

y=7 sin 0.

Thus,
/]
V==w S'” y: de=m Sﬂn r? sin?0.d (r cos ¢)
1

1

S=2¢ S "y ds=2r Sa’ r sin 0. ./dr®+rd6%,
81 1

where 7 is expressed in_terms of 6 from the givon equation of the curve,
or, if convenient, we may use » as the independent variable, and express
6 in terms ot » from the equation, the limits being the corresponding
values of r.

Note. For an alternative method of proof see Appendix.

Illustrative Examples.
Ex.1. Find the volume and area of the curved surface of
a paraboloid of revolution formed by revolving the parabola y*=4ax

about the x-awis, and bounded by the section £=x,.

Y

~Q

o

14
]
[}
1
!
[}
]
'
[
’
.
’
]
[
[
:0
]
[
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Now_the required volume

2z, T, .
V=nu S y? dp=mw SO dax dz=2mar,*=3%m2,y,”

0
( where g, is the extreme ordinate, so that y,2=4az, )

=}.7y,%x,=%. (the volume of the corresponding cylinder,
with the extreme cireular scction as the base and height

equal to the abscissa).

Also, the required surfacc-area

o '\/ 1 -’?;l_—a SZI : \/ a.'l;
= ¢ l' —_ 2 i
S=22r S o ¥ 1+ ( d dz 0 J4aa 1 dz

. 8 $_ 3
=41r \.'a, 0 Ja+m de= 31r~/a,{(a.+.1'.) it ¢ ] }'.

Ex. 2. The part of the parabola y* = 4ax bounded by the latus rectium

revolves about the tangent at the vertew. Fwmd the vclumie and the

area of the curved surface of Lhe reel Llus generated.

Y

Here the axis of revolution being the y-axis, and the extreme values
of y being evidently +2a,
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the required volume

= +2a 2 _ +2a gt . . 4
V=m S —9, ¥ dy=m S—Qa 6 W [ yt=dax]
-
- T . 2&.2“) = 41m.’.

16a? 5 5

Also, the required surface-area
+2a dxn 2
S=21rSa$d=2 S \/ (‘5
s=2m ), z A/ 1+ d”) dy

+2a y* Tyt de ¥
=92r S b4 '\/ / [ SR __]
-2q 4a 1+ 4q* dy dy 2a
+im

=4mra? tan?6 sec®0 do [ putting y=2a tan 0 }

—anv

+ )
= 4ra? S il (sec®d —sec™n) d0
_}"-
+ir
=41ra,"[.]; tan 0 sec?®—2 tan 6 sec 0 —3 log tan (‘];1r+§0)] i
=4ra* {_% \/2—:1 log cot, ﬁ'ﬂ']=1l'a’ [3 ;J‘Z—]og( ~/2+1)].

Ex. 3. Find the volume and the surface-area of the solid generated
by revolrang the cyeloid n=a (0 +sin 8), y=a (1+ cos 08) about its base.
The equuations show that the cycloid has its base as the x-axis ; the

extreme values of ¢ are given by 0=+, 1.e., z= tam.
The required volume

T (14cos 6)* d8
T

V= Saﬂ' yz dx=7ra‘ S

(14

r=5rta".

P

= Bmrqg? Sﬂ

——

cos® 40 d0=8ma®:
T

The required surface-area

S=2r S 4 ds=2m S'y Jde® + dy?
=2r |7 _a(1-+c0s 6). J/a(l +cos 8) 4O +(=a sin 6 db)’
=2wa’ S’:" (14 cos 0) A/2(1 +cos 6) do

cos® 30 d9=8ma®- 8 =§4 ma’.
n 3 3

=Bra? S;‘"



264 INTEGRAL CALCULUS

Ex. 4. Find the volume and surface-area of the solid generated by
revolving the cardioide r=a (1—cos 6) about the initial line.

Here, since tho curve is symmetrical about the initial line, the
solid of revolution might as well be considered to be formed by revolv-
ing the upper half of the curve about tho initial linc. The extreme
points of the curve are given hy =0 and 6 =.

Tho required volume

V=n § ytdr=m S r? sin?0.d (r cos’6)
=7a® S (1—cos 6)? sin?6.d{(1 —cos 8) cos 6}

=na® S?r (1—cos 0)? sin?@ (—sin 6+2 sin @ cos ) db
[ = inereases as 8 diminashes from w o Q)
=mra® S: (1-2)%(1-2%)(1-22) ds [ putting 2=cos 6 ]
= 8ras,
The required surface-area

S=2r S y ds=2r S 7 sin 0. \/dr?+ »? d6*
=9r S: a{l—cos 6) . sin 0. /(a sin 8 d6)®+a*(1—cos 6)* d6”

=92mqa? S: (1—cos 8) sin 0 \/2(1—cos 6) d6
2
=9 \/27a? So :aIg da [ putting 2=1-cos 0 ]

=2 \f2ma® .3 (2)5 =32mwa’.

»

11°2. Solids of revolution, axis of revolution being
any line in the plane.

If the given curve LM be revolved about any line 4B
in its plane, and the portion considered of the solid of
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revolution formed be bounded by the planes perpendicular
to AB through the points 4 and B respectively, then PN
being the perpendicular on AB from any point P on the
curve, P'N’' the contiguous perpendicular, the volume of
the portion considered is given by

AB
V=Lt Sn.PN®*. NN’ ‘—‘njo PN?*.d (AN).

Also, the surface-area of the portion considered is
given by,
S =Lt %z PN (elementary arc PP')=2nfPN.ds.

From the given equation of the curve and of the line
AB, PN, as also AN and ds are expressed in terms of a single
variable, and the corresponding values of the variable for the
points A and B are taken as the limits of integration.

Ex. A quadrani of a circle, of radwus a, revolves round its chord.
Find the volume and the surface-area of the solid spindle thus generated.
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P being any point on the quadrant APB, where Z AOP-=
clearly 4P=2q sin 30, and L PAN=%/ POB=}(}r— 6).

B

o) a ry

.". PN=2q sin 36 sin (}r—40)=a {cos (§ — }r) —cos }n}
AN =29a sin 40 cos (7 —38)=a {sin }x--sin (0 — i)}
Elementary are PF =a d8.

Also for tho solid tormed, limits of # are 0 and 3w respectively.

Hence, V'=w 5 PN2.d (.1N)
im .
=mra® SO {cos (80— 1) —cos lr}? cos (60— 1) dO
=1 Sj" [cos® (0 — }7) — A/2 cos? (0 - {m)+ } cos (0— 1)] do

=ra’ Szw [ % cos (30 — §7)+ § cos (0 —3n)
- :‘,-2 {cos (20 —§m)+ 1}] do

1

9 5\7-2 sin (20—511‘)

= 7a® [ L sin (80 r) -

5 . 1 dx
+ 4 sin (0 }r)——;;-gﬂ]o

=ra’ (_1.9.-_.3”).
6 N2
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T
Also, S=9or SO DPN.a 10

2= 2 S(i)" {cos (0 — 7)) —cos }=} do

= 97ra? [sin (0—3r)— :)29] 3”

. 1 T 4~
= 2 40Q,. — = 2 .
2ma (“ N2 242) a (N&)

11°3. Theorem of Pappus or Guldin.

If a plane area bounded by a closed curve revolves throwugh
any angle about a straight line in 1ts own plane, which does
nol intersect the curve, then

(I) The volume of the solid generated is equal to the
product of the revolving area into the length of the arc
described by the centroid of the area.

(II) The surface-area of the solid generated is egual to
the product of the perimeter of the revolving area into the
length of the arc described by the centroid of that perimeter.

Proof.

zl

(I) Let 64 be any element of the area whose distance
from the axis of rotation is z. Then 6 being the angle
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through which the area is rotated, the length of the arc
described by 64 is z6, and hence the elementary volume
described by the element 64 is 20 . 4.

The whole volume described by the given area therefore
=X20.4=032.04=0z4 (From Elementary Statics)

[ where 4 is the total area of the curve and z is the distance
of its centroid from the axis of revolution ]

= A28 =area of the closed curve x length of the arc
described by its ecentroid.

(IT) Let 6s be the length of any element PP’ of the
perimeter of the given curve, and z' its distance from the
axis of revolution. The elementary surface traced out by
the element s is ultimately 20 . os.

The total surface-aroa of the solid generated is therefore

= ¥2'0.6s =032 .65 =0z's (From Elementary Statics)

[ where s is the whole perimeter of the curve, and z' the
distance of the ecentroid of this perimeter {from the axis ]

= 3.2'0 = perimeter x length of the arc described by
its centroid.

Note. 'The ahove resulis hold even if the axis of rotation fouch the
closed curve.

Ex. 1. Find the volume and surface-area of a solivd tyre, a being the
radius of its section, and b that of the core.

The tyre is clearly generatel by revolving a circle of radius a abont
an axis whose distance from the centre of tho circle is b.

'he centre of the cirelo is the controid of both the area of the circle
as nlso of the perimeter of the circle, and the length of the path
described by it is evidently 2xb.

Hence, the required volume=ra* x 2rb=2r%a%b

and the required surface-area = 2ra X 2rb=47*ab.
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Ex. 2, Show that the volume of the solid formed by the rolation
about the line 0=0 of the area bounded Ly the curve r=f(0) and the
lines 0=0,,0=0, is

[/
3 So,‘ r? sing do.
1

Hence, find the vrolume of the solid gemerated by revolrina the
cardioide r=a (1 —cos 6) about the mitial Line.

Dividing the area in question into an infinite number of elemontary
arcas (as in the figure, § 9'3) by radical lines through the origin, let
us consider onc such eclementary area bounded by the radii vectors
inclined at angles @ and 0+d0 to the initial line, their lengths being
7 and r+dr say. This elementary area is ultimately in the form of a
trinngle whose arca is %r (»+dr) sin d#@, i.e., 37? d8 up to the first order.
Its C. G. is, neglecting infinitesimals, at a distance §r from the origin
and its perpendicular distanco from the initial line is ultimately
4r sin 8. The clementary volume obtained by revolving the elcmentary
area about the initial line is therefore by Pappus’ theorem, ultimately

cqual to
9w . 3rsin 0. 3r? do=%rr" sin 0 d6.

Ilence, integrating between the extreme limits =0, and 0=6,,
the total voluine of the solid of revolution in qucstion is

/)
:';'FS * 9 sin 6 do.
0,

In casc of the cardioide r=a (1—cos 0), the extrome limits for 6 are
oasily seen to be 0 and =, and so the volume of the solid of revolution

generated by it is
ir SZ a® (1—cos3 8)* sin 0 dA, which on putting 1 —cos 6 =2
oasily reduces to

2
fra’ SO 2} dz= gwa,"--g;- = g'tra,“.
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EXAMPLES XI

1. Find the volumes of the solids generated by revolv-
ing about the z-axis, the areas hounded by the following
curves and lines :

(i) y=sinz; 2=0; z=n.

(ii) y=bx—2z°;: 2=0: =05,

(iii) y* =9z ; y=3x.

(iv) Jz+ Jy=da; 2=0; y=0.

2. Show that the volume of a right circular cone of
height % and base of radius a is $na®/.

3. The circle z®+y® =a? revolves round the -axis :
show that the surface and the volume of the whole sphere
generated arc respectively 4na® and gna’. [ C. P. 1941 ]

4. DProve that the surface and the volume of the ellip-

2 ,2

soid formed by the revolution of the ellipse sig + = 1
(i) round its major axis are respectively
2nab i 1-e*+e ' sin" e} and #nah?,

and (ii) round its minor axis are respectively

2n{a, +" log«/1 }a.nd - aa”h.

5. Show that the curved surface and volume of the
catenoid formed by the revolution, about the z-axis, of

the area bounded by the catenary y= (2" (eci+ e'a)' the

y-axis, the z-axis, and an ordinate, are respoctively
z (sy +az) an” 3na (sy + az),

s heing the length of the are between (0, a) and (z, v).



VOLUMES AND SURFACE-AREAS 271

6. The arc of the astroid z=a cos®8, ¥ =a sin®6, from
6=0 to 0 =%xn revolves about the z-axis: show that the
volume and the surface-area of the solid generated are
respectively tsna’ and §aa>.

7. A cycloid revolves round the tangent at the vertex ;
show that the volume and the surface-area of the solid
generated are n°a® and %2aa® respectivelv, a being the radius
of the generating circle.

8. The portion hetween the two consecutive cusps of
the cycloid 2 =a(0 +sin 8), 7 =a(1 + cos 8) is revolved about
the z-axis ; show that the area of the surface so formed, is
to the area of the cycloid, as 64 : 9. [ Nagpur, 1984 ]

9. Show that the surface of the spherieal zone contained
between two parallel planes = 2aa X the distance between the
two planes, where a is the radius of the sphere.

10. Show that the volume of the solid generated by
the revolution of the upper-half of the loop of the curve
y?=2%(2-2) about 0X is #x.

11. Show that the volume of the solid produced by the
revolution of the loop of the curve y*(a+ ) =x3*(a — ) about
the x-axis is 2na® (log 2 — %). [ P. P. 1935 ]

12. Show that the surface-area and the volume of the
solid generated by the revolution about the z-axis of the
loop of the curve x=t% y=t—3t° are respectively 3=
and %n.

13. The smaller of the two arcs into which the parabola
y? =8ax divides the circle z?+y®=9a% is rotated about
the z-axis. Show that the volume of the solid generated

18 -23'8'710,3.
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14. If the curve r=a+b cos 8 (a > b), revolves about
the initial line, show that the volume generated is
$na (a® +0%),
15. The following curves revolve round their asymptotes ;
find the volume generated in each case :
G) #* (20— z)=2z"°.
(ii) ¥ (a® +2%)=0a3, [ P. P. 1933 ]
(iii) (a-z) y* =a’x.
16. An arc of a parabola is bounded at both ends by
the latus rectum of length 4a. Find the volume generated

when the arc is rotated ahout the latus rectum.
[ Nagpur, 1935 ]

17. Show that the volume of the solid formed by
revolving the ellipse 2=a cos 8, ¥ =b sin 8, ahout the line
z =2a, is 4n°a>b.

18. Show that if the area lying within tho cardioide
r=9a (1+cos 6) and outside the parabola {1+ cos 6)=2a
revolve about the initial line, the volume generated is 18xa®.

19. Show that the volume of the solid generated by
revolution about OY of the area hounded by 07, the curve
y% =2% and the line ¥y =8 is 2§45,

20. The arc of a parabola from the vertex to ome
extremity of the latus rectum is revolved about the corres-

ponding chord. Prove that the volume of the.gpindle so
formed is 2.5 aa”
75 )

ANSWERS

1. (i) 3. (ii) 23, (iii) #r. (iv) Jma’.
15. (i) 272%as. (ii) 47%a’. (iii) 3r%a®. 16, 3}ima®.



CHAPTER XII
CENTROIDS AND MOMENTS OF INERTIA

12°1. Centroid.

It has been proved in elementary statics that if a system
of particles having inasses m,, m,, Mas,...... have their
distances parallel to any co-ordinate axis given by x4, x4,
Ta,..., then the corrosponding co-ordinate of their centre of
mass will be given by

5=m,:r1 +morg + - _Ymz,
mq,tmg -t Xm

—y

Similarly, 1—/=°;;::I' ete.

Now, if instead of a system of stray particles, we get
a continuous body, we may consider it to be formed of
an infinite number of infinitely small elements of masses,
and in this case it may be shown, as in the other cases wviz.,
determination of lengths, areas, etc., the summation ¥
will he replaced by the integral sign.

Thus, if ém be an element of mass of the body at a point
whose co-ordinates are z, ¥ (or in three dimensions, z,y, 2)
the position of the centre of mass of the body will be

given by

-a;_fwdm'
f dm

the limits of integration being such as to include the whole
body.

18 %
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In practice, the elementary mass ém is proportional to
the element! of length Js, or element of area, or element
of volume of the corresponding element, according as we
proceed to find the centroid of an are, or area or solid, and
the limits of integration will then be the limits of the

corresponding element.

12°1(1). Illustrative Examples.

Ex. 1. Find the centroid of an wire in the form of a circular arc.

Y

-
-
-
-
-
-

A

Let AD be a wire in the form of cirenlar arc of radius ‘a’, which
subtends an angle 2a at its cgntre O.

Take O as origin, and OX, which bisects the arc 4D, as the
x-axis.

Then by symmetry, the centroid @ lies somewhere on OX.

Now, 6 denoting the vectorial angle of the point P on the arc, the
element PP’ there has a length a dd, and the abscissa of P is a cos 6.

Also, to cover the whole arc, 8 extends between the limits —a to a.
Hence, the abscissa OG of the centroid G is given by

a
_ fzdm S_aa,coso.pado
=1

* 10
—a pa c

( p denoting the linear density of tho wire )
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]
S cos & do
- -q

28ina sina
=0n- - --- =

f‘f—'S'T P
-a

Cor. The distance of the centroid of a semi-circular arc from the

.. 2a
centre is
™

Ex. 2. Find the centre of grarity of a uniforn lamina bounded
by a parabola and a double ordinate of .

Y R

.z

0 N [m X
Q Q -
RI

Lt the lamina be bounded by a parabola y*=4ax and a double
ordinate RM/? given by x=uw,.

By symmotry, the centroid lies on *%he axis, and hence y=0.

Divide the lamina into elementary strips by lines parallel to the
y-axis. Consider the strip FQEQ'P’, whero the co-ordinates of P are
(, ). The length PQ is 2y and tho breadth NN’ is éxz. Ilence, the
area of the strip is ultimately 2y dx. The limits of z, to cover the area

considered, ave clearly O to x,.

Hence, for the required centre of gravity,

z,
Swdm SO x.2ydr.o
w:. ='.\bl
Sdm SO 2ydx . o

( where ¢ is the surface-density of the lamina )
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x —— x
So‘w'2~/4awdm.a- S lmidm a %
a 0 1.2 S

= -—_ *— 5";10

& - £x
§012,J4axdw.a !01 a:&da: 4

Thus, the cenire of gravity divides tho length OM in the ratio of
8:2

Ex. 3. Find the centre of gravity of a uniform lamina in the form

2
of a quadrant of the ellipse 2., +¥ =1, [ P. P.1935 ]

vy}
v

o
.4 LT

Liet AOB be the quadrant considered. Divide it into elomontary
strips by lines parallel to the y-axis. The area of the elementary
strip corresponding to the point P, whose co-ordinates are z, g, is
ultimately y 3z, and the centroid of this element is at the middle point
of the strip (which is supposed infinitely thin) and thus has its

co-ordinates 2, ’2’ The limits of & for the quadrant considered are

evidontly 0 and a.

IIence, the C.G. of the area considered will be given by (z', ¢’
denoting the co-ordinates of the centroid of the element dm which is

taken here as the strip),

- a
! @ d'"‘_}g ®.ydz.o [ o being the surface-
S im ﬁ” iz .o density of the lamina ]
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a .Q e Y |
Som aJa. z? de .o [ a:"_'_y‘=1]

b 3 3
0a',\/a. gldr.o

S: x NJa®—z? dz S?:r sin @ cos?@ dé
al

S“ Ja® —z? de S:" cos®0 d0

[ putting x=a sin 6 ]

1
3 4a
"1_1r—31r
2 9

. a ¥y @b a_ ) 3
_.Sy din 502 ydm'”_l‘oa." (a®—2?) dzx

/= (@ Taie b
S dm SO Yydo.o 80 a Ja?—r? de
g 2
_ 1bSn cos”0 df 1, 38 _4,
2 (ér 2T = 3«
cos®0 d0 =
0 2 9

Cor. The centroid of half the ellipse bounded by the nrinor axis is

on the major axis at a distance 3: from the centre.

Also the centroid of @ semi-circular area of radius ‘a’ is on tho

radius bisccting it, at a distance ;:"r from"the centre.

Ex. 4. Ihwnd the centre of gravity of a solid liemasphere.

Clearly, the hemisphere may be supposed to be generated by revolv-
ing a circular quadrant APB about one bounding radius OA4, which
we may choose as the z-axis. By symmetry, the contre of gravity
of the homisphore will be on OX., Now, divide the homisphere into
infinitely thin circular slices by planes perpendicular to the axis of
revolution OX. An element of such slice, corresponding to the point P,
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has its volume ultimately equal to wy? 8z (2, y being the cartesian
co-ordinates of P), and the z-co-ordinatos of its centre is .

8

Hence, if ¢ bo the density of the solid hemisphere and a its radius,
the position of the C. G. is given by

1

a a

S axary? dz.p S x(a?—x*) du

) _Jo v . 2 2 2
JetlyT=a" |

= -
a

@ 2 B 2__,.2
Soqry dz .p So(a x?) dx

a’.‘-l-.—-a

2 4_38_
a*a—2
3

12°2. Moment of Inertia.

If a system of particles have masses my, mga, M3,... and
if 4, 72, 73,... be their distances from a given line, then
2mr? is defined as the moment of inertia of the system ol
particles about the given line.

If M be the total mass of the system m,, mg, ete.,
it is usual to express the moment of inertia of the system
about any line in the form Mk*, where %k represents a length
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and is called the mg'[z: us of gyration of the system ahout the
given line.

If instead of a system of particles, it is a body in the
form of a thin wire, or a lamina or a solid, of which we
want to find the moment of inertia about a given line, we
may consider the body to be made up of an infinite number
of infinitely small elements of masses, and then the summa-
tion Smr? reduces to the integral [ r? dm, where the limits
are such as to cover the whole body.

12°2(1). Illustrative Examples.

Ex. 1. TFind the moment of wneitia of a thin uwiform straight rod
of mass M and length 2a about its perpendicular biseclor.

Y

P re v c - -

@
)
o
>

An infinitesimal clement of length dx at P whose distance from
the middlo point of the rod is z, has its mass g—ﬁaw. Hence, the

moment of inertia of the rod about the perpendicular bisector OY is
given by

S+a o M M 2q° a’

= X — = . - «
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Ex. 2. Find the moment of inertia of a thin uniform laming in the
Sform of a rectangle about an axis of symmnetry through its centre.

Y
D A
O] AU Apiu R |
0 X
C B

Let 2a and 2b be the lengths of tho adjacent sides 4D and AB of
the rectangular lamina ABCD, and OX, OY the axes of symmetry
through its centre O, which are parallel to them.

M being the mass of the lamina, the surface-density is clearly
43!11 Now, divide the lamina into thin strips parallel to OX, and
consider any strip PQ at a distance y from OX, whosc breadth is 3y.
The mass of the strip is then evidently gl(; 2a 8y. Every portion of it

being ultimately at the same distance y from OX, the moment of
inertia of the whole lamina about the x-axis is given by

I,= S 2a dy
=M*

Similarly, the moment of inertia of the lamina about OY is given by

2
I,= Mi“n--
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Ex. 8. Find the moment of inertia of a thin unaform elhphc
lamina about its axes.

Let :c ,— 1 be the equation to the ellipse. Tis area is known

b
to be wab, and if M be its mass, the surface-density is wl[b Dividing

the lamina into thin strips by lines parallel to the z-azis, n
elementary strip at a distance ¥ fiom the z-axis has its length

2m=2%’ b3 =97 from the equation of the elliptic boundary. Thus,

9

3y being the breadth of the strip, its mass is 13“5)-2‘; ,Jb’ -y

Hence, the moment of incertia of the lamina ahout the z-axis is
given by

+1 ]
I.,= S ’ y? M ,,,/b —y? dy

1ra.b b

2 (4
e S b 8in”@ cos®0 d0 [ putting y=>0 sin 6 ]

_in-

Similarly, the moment of inertia of the lamina abont the g-axis is

given by

Cor. Tho moment of inertia of a thin uniform circular disc of

2
mass M, and radius a, about any diameter is Mg'4- . [P.P. 1932 )

Ex. 4. Find thie moment of inertia of a thin uniform circular plate
about an axis through its centre perpendicular to its planc. ~

Let M be the mass and a the radius of the circular lamina, so that

its surface-density is M;-
L{!]
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Divide the lamina into infinitely thin concentric rings by circles
concentric with the boundary. Any elementary ring between circles

Y 4

......
rrrrr
"""""

-
bl Y e Y

of radii » and 46, has its area ultimately equal to 2xr 8r and so its
mass is 1;1;[,~2m- dr. As cvery parl of the ring is ultimately at the

same distance r from the axis in question which is perpendicular to its
planc through the centre, the moment of inertia of the ring about the

axis is ultimately 1%[.;\-2#;* or.r2.

Hence, tho required moment of inertia of the disc about the axis
is given hy

— a 'n[ . .}
T—SO xa? omr dr.r

=;l'-.z- =M

JJ‘.’.S“ s gp=2Ma'_, a0
af Yo O 4 9

Ex. 5. Find the moment of inertia of a sphere about a diameter.
i [ P. P.1934]

If M be the mass and a the radius of theo sphere, the volume of the

sphere is known to be §ra®, and hence its donsity is 41%,-
3

Take the diameter about which the moment of inertia is required
to be the x-axis. Divide the sphere into infinitely thin circular slices
by planes perpendicular to this axis. An elementary slice between the
planes z and x+ 08z has its volume ultimately equal to = (a?—x?) &,
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since its radius is a/(a®~x?). [ Seo Fig. Ez. 4, Art. 12°1] 1lence, the
moment of incrtia of this slice about the z-axis, which is perpendi-
cular to its plane through its contre, is ultimately

Y 2 —
- (a* —x?) dx-"

__m2 »
4oy
3va 2

[ See Ex. £ above ]
Hence, the required moment of inertia of the whole sphere about
the diameter is given by

— ta 'I'[ 2 _ .2 _d"—m"
I-—S__a%mJW(a, z?) du 9

3 M{*a |\ o 2. 2, 4
=2 ~923%x%+a%) d

8 a® )og (@ ax®+at) dr
=AM o 942207 2"’“)_ 2 aro0

EXAMPLES XII

1. Show that the C. (;. of thin hemispherical shell
is at the middle point of the radius perpendicular to its
bounding plane.

2. Show that the C. G. of (i) a solid right circular cone
is on the axis at a distance from the base equal to % of the

height of the cone ; (ii) a thin hollow cone without base is
on the axis at a distance from the base equal to % of the

height of the cone.

3. Find the cenfroid of the whole arc of the cardioide
r=a(l + cos 0).
4. Find the centroid of the area hounded by the cycloid

z=a(6 +sin 6), y=a(l — cos 6) and its base.

5. Fi‘nd the centroid of the sector of a circle.
[ P. P. 1931 ]
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6. Find the centroid of the arc of the parabola y° =4ax
included between the vertex and one extremity of the latus
rectum.

7. Find the positions of the centroids of the [ollowing
areas : )

(i) A loop of the curve y*(a + z) = z*(a — z).

(ii) Area bounded by the curve %% (2a—r)=2%, and
" its asymptote.

(iii) Area bounded by ¥ = 4az and v=922.

(iv) One loop of r=a cos 26.

8. Find the moment of inertia of a solid right circular
cylinder of radius a about its axis. [ P. P. 1933 ]

9. Obtain the moment of inertia of a solid right
circular cone of height & and semi-vertical angle a about
its axis.

10. Prove that the moment of inertia about an axis
through the centre perpendicular to the plane of a thin
circular ring whose outer and inner radii are @ and b is
3 M (a® +b%), where M denotes the mass of the ring.

11. Find the moment of inertia of a recctangular
parallelopiped, the lengths of whose edges are respectively
a, 2b, 2¢c, ahout an axis through its centre parallel to the
edge 2a.

12. Show that the moment of inertia of a thin hollow
spherical shell of radius 2 and mass M, about a diameter is

%02
M=5
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13. Show that the moment of inertia of a parabolic
area of latus rectum 4a, cut off by an ordinate of a distance
iv from the vertex, is $Mh® ahout the tangent at the vertex,
and # Mah about the axis, I/ being the mass of the area.

14. Show that if a thin lamina has its moments of
inertia about two perpendicular axes in its plane respect-
ively equal to I and I3, then the moment of inertia about
a normal to the plane through their point of intersection

18 ]1_+[2.

15. Prove the theorem of parallel ares in case of a
lamina, namely, that the moment of inertia of a thin lamina
about any given line in its plane is equal to that about
a parallel line through its C. (5., together with the moment
of inertia of the whole mass concenirated at the C. G.

about the given line.

ANSWERS

3. z=¢%a, y=0. 4, =0, y=3a.
5. On the radius bisecting the sector, at a distance %a 8133' from

tho centre, 2z boing the angle of the sector at the centre, and a the

radius.
a 3J2~]og(J2+1) 4a 2.2—-1

6. o= Ja+log(n2+1)' YT 3" J2+log (nW2+1)

7. (i) z= ;’ 3ir_:- y=0. (ii) m=§;’ y=0.
: 128 0/2 a '
(iii z=2a, y=a. (iv) w——lﬁ‘g-/— -’ y=0.
8 b2+c

a®, 2 2
8. M2 9. 10 Mh® tan®a. 11. M-




CHAPTER XIII
ON SOME WELL-KNOWN CURVES

13'1. We give below diagrams, equations, and a few
characteristics of some well-known curves which have been
used in the preceding pages in obtaining their properties.
The student is supposed to be {amiliar with conic sections
and graphs of circular functions, so they are not given

here.

13'2. Cycloid.

The cycloid is the curve traced out by a point on the
circumference of a circle which rolls (without sliding) on

a straight line.

A
i
|
[}
[]
(]
]

. )

- !

oL ™M D o’ X

Fig. (i)

x=aff —sin 9). 1= a(1—cos 0).

Let P be the point on the circle MP, called the generai-
-ing circle, which traces out the cycloid. Let the line OMX
on which the circle rolls be taken as z-axis and the point O
on OX, with which P was in contact when the circle began
rolling; be taken as the origin.

Let a be the radius of the generating circle, and C its
.centre, P the point (z, ) on it, and let Z PCM =6. Then
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6 is the angle through which the circle turns as the
point P traces out the locus.

. OM =arc PM = q0.

Let PL be drawn perpendicular to OX.

2=0L=0M-ILM=a0—-PN=ab-a sin 0
= a(6 — sin 0).
Yy=PL=NM=CM-CN=a-a cos 0
=a(1 - cos 6).

Thus, the parametric equations of the cycloid with the
starting point as the origin and the line on which the circle
rolls, called the base, as the r-axis, are

x=a(6 - sin 6), y =a(1 ~ cos 6). - (i)

The point 4 at the greatest distance from the base OX
is called the verter. Thus, for the vertex, ¥ i.e., a(l—- cos 6)

is maximum. FHence, cos 0= —1 j.e., 0=n.
AD=a(l1-cos n)=2a. . vertex is (ax, 2a).
For Oand O, y=0. .. cosb=1. .. 6=0and %

As the circle rolls on, arches like 040" are generated
over and over again, and any single arch is called a eyeloid.

z=qa(0 +sin ). y=a(l—cos 8).

Since the vertex is the point (an, 2a) the equation of
the cycloid with the vertex as the origin and the tangent
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at the vertex as the 2-axis can be obtained from the previous
equation by transferring the origin to (ax, 2a) and turning
the axes through = ¢.e., by writing

an+a' cosn—%' sinn and 20+ sina+9y cos n
for £ and ¥ respectively.

Hence, a(0—sin 8)=an—

or,e o= a'(n -8 +a sin 0=a(0’ +sin 6'),
where 8'=n—0,
and a(l - cos 0) =2a — 9/,
or, ¥ =2 —a+acos0=a+ucos@
=a—a cos (z—6)=a(l — cos 0').

Hence, (dropping dashes) the equation of the cycloid
1ith the vertex as the origin and the tangent at the verter
as the x-axis 3

x=a(0+sin 6), y=a(1 - cos 6). - (ii)

In this equation, 6 =0 for the verter, 6 =n for O, and
0= —x for O’

The characteristic properties are :

. () For the cycloid z =a(8 - sin 6), ¥ =a(l - cos 6), radius
'of curvabure =twice the length of the normal.

(ii) Tﬁ:evolute of the cycloid is an equal cyeloid.

(i1i) For the oycloid z=a(6 +sin 8), ¥ =a(l — cos 6), v= %6
and s? =8ay, s being Measured from the vertex.

(iv) The length of the ahove cycloid included between
the two cusps is 8a.

(v) Intrinsie equation is s =4a sin v. )

Note. The above equaiion (ii) can also be obtained from the
¥ig. (i) geomatrically as follows :
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If (', ') be the co-ordinates of P referred to the vertex as the
origin and the tangent at the vertex as the z-axis,
g'=LD=0D—-OL=ar—z=a(r—08)4a sin 4,
Yy =AD—-PL=2a—y=2a—a(l—cos 8)=a(l+ cos 0).
Hence, writing 6" (or 8) for = — 9, cte.

13°3. Catenary.

The catenary is the curve in which a uniform heavy
string will hang under the action of gravity when suspended
from two points. 1t is also called the chainetle.

Its equation, as shown in hooks on Statics, is
X X
= E =a g c —G)o
y ccoshc 2(e +e

Y

RY

o N X

C is called the vertex ; OC =c. OX is called the direcirizx.

The characteristic properties are :

(i) The perpendicular from the foot of the ordinate upon
the tangent at any point is of constant length.

(ii) Radius of curvature at any point =Ilength of the
normal at the point (the centre of curvature and the z-axis
being on the opposite sides of the curve).

(iii) y®=c? + 5%, s being measured from the vertex C.

(iv) s=c tan v, ¥y =c sec .

(v) z=c log (sec v+ tan v).

19
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13°4. Tractrix.

Its equation is

= Je_ay @y 0 Na®-y®
z ‘\/a /) +2loga+ Jaz_yz
Y
A
‘/K
0O T X

or, z=alcos t+log tan 4t), ¥ =a sin ¢.
Here, 04 =a.
The characteristic properties are :

(i) The portion of the tangent intercepted between the
curve and the z-axis, is constant.

(ii) The radius of curvature varies inversely as the
normal (the centre of curvature and the z-axis being on the
opposite sides of the curve).

(iii) The evolute of the tractrix is the catenary

¥ =a cosh (z/a).

13°6. Astroid.

2
3

2 2
Its equation is X3+ y3=33,

or, x=a cos36, y =a sin36.
Here, OA=0B=04'=0B =a.
The whole figure lies completely within a circle of radius
a and centre O. The points 4, 4’, B, B’ are called cusps.

It is a special type of a four-cusped hypo-cycloid.
[ See § 18°6 ]
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Y
B

B

The characteristic property of this curve is that the
tangent at any point to the curve intercepted hetween.
the axes is of constant length.

K3

The perimeter of the astroid z° + 7% =a¥ is 6a.
13°6. Four-cusped Hypo-cyecloid.
.. [x)\3 _}_r')"gg
Its equation is (a) +(b 1,
or, X=a cos8®®,y=b sin®%.
Y
B
Al o A X
B’
Here, 04=04"=a; OB=0B'=p,
2 2
The perimeter of thehypo-cycloid ABA'B’ is 4% -;(ff;- b

The astroid is a speciallcase of this when a = .
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13°7. [Evolutes of Parabola and Ellipse.

(i) The evolute of the parabola y2 = 4az is
27ay? = 4(x — 2a)3.

This curve is called a semi-cubical parabola.

Y

Transferring the origin to (2a, 0), its equation assumes
the form %?=kx® where k=4/27a, which is the standard
equation of the semi-cubical parabola with its vertex at the
origin.

Hence, the vertex C of the evolute is (2a, 0).

(ii) The equation of the evolute of the ellipse
22 /a%+9y?/b%=11is
2 2 2
(ax)3+(by)3 =(a® -b?)3,

which can be written in the form

)

% s
o5
where a=(a? - b?)/a, g=(a®—b2)/b.
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2 _ 1.2\2
The area of the evolute is %n(a a.bb )>*,

Y

The length of the evolute 1s 4(%): - ba:)'

Hence, it is a four-cusped hypo-cyeloid.

13°8. Folium of Descartes.

Its equation is x® +y?2 = 3axy.

It is symmetrical about the line ¥ =1.
Y

—

The axes of co-ordinates are tangents at the origin, and

there is a loop in the first quadrant.
It has an asymptote z+y +a=0 and its radii of curva-

ture at origin are each = ga.
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The area included between the curve and its asymptote
=the area of the loop of the curve

=842

13°9. Logarithmic and Exponential Curves.
Y

/ '
= = /
0 X

(i) y=log =. (ii) y=¢".
(i) = is always positive ; ¥=0 when 2=1, and as z
becomes smaller and smaller, ¥, being ncgative, becomes

numerically larger and larger. For = > 0, the curve ts
continuous.

(ii) = may be positive or negative but ¥ is always positive
and ¥ becomes smaller and smaller, as z, being ncgative,

becomes numerically larger and larger. T'he curve is conti-
nuous for all values of z.

13°10. Probability Curve.

¥ The equation of the
probability curve is

3
y=e~ % .
The x-axis 1is an

asymptote.
X' o X

The area between the
[ 4
Y curve and the asymptote is

=9 J: e~*" dz 2.} Ja= Ja.
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13°11. Cissoid of Diocles.

I6ts cartesian equation is Y

y? (20— 2)=2°.

04 =2a ; x=2a is an asymp-
tote. X’ O A X

Its polar equation is

y =20 sin®6
cos 6

13°12. Strophoid.

The equation of the curve is

e = 2,07
/4 x a—
OA=0B=a.

OCBPO is a loop.

x =@ 18 an asymptote.

a-o . « . .
The curve y®=2" T, 8 similar, just the reverse of
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strophoid, the loop being ord the right side of the
origin and the asymptote on the left
side. Y

13°13. Witch of Agnesi.
The equation of the curve is
zy® =4a® (2a — z).

Here, 04 = 2a.

This curve was first discussed
by the Italian lady mathematician
Maria Gactaua Agnesi, Professor of
Mathematics at Bologna.

13'14. Logarithmic (or Equiangular) spiral.

Its equation is r=ae?°°t2( or, r=ge™ ),
where cot @ or m is constant.

Characteristic Properties :

(i) The tangent at any point makes a constant angle
with the radius vector, (¢ =a).

(ii) Its pedal, inverse, polar reciprocal and evolute are
all equiangular spirals.

(iii) The radius of curvature subtends a right angle at
the pole.

Note. Because of the property (i), the spiral is called equiangular.
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13°15. Spiral of Archimedes.

-
‘.... -

Its equation is r=a6.

Its characteristic property is that its polar subnormal
1S constant.

13°16. Cardioide.
Its equation is (i) r=a(1+ cos 6), or, (ii) r=a(1 - cos 6).

In (i), =0 for A4, and 0= for O.
In (ii), 0 ==x for A, and 6 =0 for O.

NS
-

(i) r=a (14 cos 6). (ii) r=a (1—cos 6).

In both cases, the curve is symmetrical about the initial
line, which divides the whole curve into two equal halves,
and for the upper half, 8 varies from O to n, and 04 =2a.
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The curve (ii) is really the same as (i) turned through
180°.

The curve passes through the origin, its tangent there
being the initial line, and the tangent at A4 is perpendicular
to the initial line.

The evolute of the cardioide is a cardioide.
The perimeter of the eardioide is 8a.

Note. Because of its shape like human heart, it is called a car-
dioide. The cardioide =a(l +cos 6) is the pedal of the circle r=2a cos 8
with respect to a point on the circumference of the circle, and inverse
of the parabola r =a/(1+ cos 8).

13°17. Limacon.
The equation of the curve is
r=a<+b cos 6.

When a > b, we have the outer curve, and when a < b, we
have the inner curve

Y
TN with the loop.

When a =b, the curve

/_\ reduces to a cardioide.
[ Sco fig. in § 13716 )
o \/
-

X Limacon is the pedal
of a circle with respect
to a point outside the
circumference of the

’4 .
Y circle.

13°18. Lemniscate.

Its equation is r2=42 cos 26,

or, (z? +,y2)2 =q2 ({L‘2 _ ys).
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It consists of two equal loops, each symmetrical ahout
the initial line, which divides each loop into two equal halves,
04 =04"=a.

r*=a” cos 20

The tangents at the origin are ¥ = +z.

For the upper half of the right-hand loop, 6 varies from
Q to 1n.

A characteristic property of it is that the product of
the distances of any point on it from (+a/ /9, 0) is constant.

The area of the lemniscate is a>.

The lemniscate is the pedal of the rectangular hyperbola
7% cos 20=a%. The curve represented by 7*=a" sin 20 is

A

r3?=qa? sin 20
also sometimes called lemniscate or rose lemniscate, to distin-
guish it from the first lemniscate, which is sometimes called
Lemniscate of Bernoulli after the name of the mathematician
J. Bernoulli who first studied its properties.
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The curve consists of two equal loops, situated in the
first and third quadrants, and symmetrical about the line
y=g. It is the first curve turned through 45°

The tangents at the origin are the axes of = and v.

.8
The area of the curve is a”.

13°'19. Rose-Petals (r=a sin no, r=a cos né).

The curve represented by »=a sin 30, or, r=a cos 30 is
called a three-leaved rose, each consisting of three equal

Y

/('\

) y
A(1) \ \
\
O - ,—\A
X Q
)

c(s)

Cis

(1)

1
X

B(2) B(2
r=a sin 360 r=a cos 36
Y
D(4)

A()
B(2)

r=g sin 280 r=a cos 20
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loops. The order in which the loops are described is indica-
ted in the figures by numbers. In each case, 04 = 0B=0C
=g, and L AOB=/BOC= /CO0A=120°.

The curve represented by r=a sin 20, or, r=a cos 26 is
called a four-leaved rose, each consisting of four equal loops.
In each case, OA=0B=0C=0D=q and ZAOB= /BOC
= /COD= /£ DOA=90".

The class of curves represented by r=ga sin n0, or,
r=a cos n0 where n is a posibtive integer is called rose-petal,
there being % or 2n equal loops according as i is odd or even,
all being arranged symmetrically about the origin and
lying entirely within a circle whose centire is the pole and
radius a.

13°20. Sine Spiral (r"=a" sin no or r"=a" cos né).

The class of curves represented by (i) 7" =a" sin 0, or,
(ii) #"™ =a" cos n0 is called sine spiral and embraces soveral
important and well-known curves as particular cases.

Thus, for the values n=—1,1, =2, +2, —% and ¥, the
sine spiral is respectively a straight line, a circle, a rectan-
gular hyperbola, a lemniscate, a parabola and a cardioide.

For (i) ¢ =n8 ; for (ii) ¢ = 3n + ub.
The pedal equation in hoth the cases is

p= ,rn+1/a'n



DIFFERENTIAL EQUATIONS

CHAPTER X1V
INTRODUCTION AND DEFINITIONS

14'1. Definitions and classification.

A differential equation is an equation involving differen-
tials (or differential coefficients) with or without the variables
from which these differentials (or differential coefficients)

are derived.

The following arc examples of differential equations :

qum (1)
(ZZ)2=G:U”+IJ:I:+G @
Z;gzo (3)
(g;g)ﬂ — g ZLZ (4)
;l;_?+5 (gzr_,_gy_._.o (5)
o §i+g§=° (6)
g:: g;l?:=o (7)

Differential equations are divided into two classes viz.,
Ordinary and Partial.

An ordinary differential equation is one in which all
the differentials (or derivatives) involved have reference to
a single independent variable.
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A partial differential equation is one which contains
partial differentials (or derivatives) and as such involves
two or more independent variables.

Thus in the above set, equations (1), (2), (8), (4) and (5)
are ordinary differential equa.tiong and equations (6) and (7)
are partial differential equations.

In order to facilitate discussions, differential equations
are classified according to order and degree.

The order of a differential equation is the order of the
highest derivative (or differential) in the equation. Thus,
equations (1) and (2) are of the first order, (3) and (5) are of
the second order and (4) is of the third order.

The degree of an algebraic differential equation is the
degree of the derivative (or differential) of the highest order
in the equation, after the equation is freed from radicals
and fractions in its derivatives. Thus, the equations (2) and
(4) are of the second degree.

Note. Strictly speaking, the term ‘degree’ is used with roference

to those differential equations only which can be written as poly-
nomials in tho derivatives.

We shall consider in this treatise only ordinary differen-
tial equations of different orders and degrees.

14'2. Formation of ordinary Differential Equations.
Let flz, v, c1)=0 - (1)
be an equation containing z, % and one arbitrary constant ¢;.
Differentiating (1), we get

of L of dy _ e (9
ot oy dn= O (2)
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Equation (2) will in general contain c¢;. If ¢; be eli-
minated between (1) and (2), we shall get a relation involv-

ing 2, ¥, and gz' which will evidently be a differential

equation of the first order.
Similarly, if we have arfequation
f(m’ Y, C1, 62)=O e e (3)

containing twe arbitrary constants ¢; and c¢,, then by
differentiating this twice, we shall get two equations.
Neow, between these two equations and the given equation,
in all three equations, if the two arbitrary constants ¢y
and ¢s be eliminated, we shall evidently get a differential
equation of the second order.

In general, if we have an equation
f(m: %, Cyy Ca,-.. cﬂ):O feee see (4)

containing % arbitrary constants ¢., Csa,... ¢cn, then by
differentiating this » times, we shall get #» equations. Now,
hetween these n equations and the given equation, in all
(n+1) equations, if the n arbitrary constants ¢4, €a,... Cn be
eliminated, we shall evidently get a differential equation
of the nth order®, for there being » differentiations, the
resulting equation must contain a derivative of the =nth
order.

Note. From tho process of forming a differential equation from &
given primitive, it is clear that since the equation obtained by varying
the arbitrary constants «in the primitive represents a certain system
or family of curves, the differential equation (in which the constants
do not appear) expresses some property common to all those curves.

* A relation containing n arbitrary constants may in certain cases
give rise to a differential equation of order less than n.
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We may thus say that a differential equation represents a family of
xurves all satisfying some common property. This con be considered as
the geometrical interpretation of the differential equation.

14°3. Solution of a Differential Equation.

Any relation connecting the variables of an equation and
not involving their derivatives, which satisfies the given
differential equation ¢.e., from which the given differential
equation can be derived, is calleda solution of the differen-
tial equation. Thus,

y=¢e® +C, where C is any arbitrary constant,

and y= Ax + B, where A and B are arbitrary constants,
are respectively solutions of the differential equations (1)
and (3) of Art. 14°1.

From the above, it is clear that a differential equation
may have an unlimited number of solutions, for each of the
different relations obtained by giving particular values to
the arbitrary constant or constants in the solution of the
equations satisfies the equation, and hence, is a solution to
the equation ; thus, y=z— J/II, y=2x—38, y= — 4§z etc.
are all solutions of the differential equation (3) of Art. 14'1.

The arbitrary constants 4, B, C appearing in the solution
are called arbzitrary constants of integration.

The solution of a differential equation in which the

number of independent arbitrary constants is equal to the
order of the equation, is called the general or complete

solution (or complete primitive) of the equation.

The solution obtained by giving particular values fo
the arbitrary constants of the general solution, is called
a particular solution of the equation,

20
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Thus, y = Az + B is the general solution, and y =2 — /11,
y=9x-3, y=—3x are all partioular solutions of the

equation (38) of Art, 14'1,

There is another kind of solution called the singular
solutzon, which will be discussed in a subsequent chapter.
[ See Art. 16°4 ]

By a proper manipulation of the arbitrary constants in
the general solution of a differential equation, the general
solution is very often written in different forms ; it should
be noted however that each of these forms determines the
same relation between the variables. This will be subse-
quently illustrated in the worked out examples.

When an equation is to be solved, it is generally implied
that the complete solution is required.

It sometimes happens that the process of solving a
differential equation leads to integrals which cannot he
evaluated in terms of known elementary functions. In such
a case, the equation is considered as having been solved
when it has been reduced to an expression involving integrals
and it is said that the solution of the equation has been
reduced to quadrature.

Note 1. The arbitrary constants in the solution of a differential
equation are said to be independent, when it is impossible to deduce
from the solution an equivalent relation oontaining fewer arbitrary
constants. Thus, the two arbitrary constants 4, B in the equation
y=A4e"*? are not independent, since the equation can be written as
y= Ae® .e* = Ce”.

Note 2. In the elementary treatise we shall not concorn our-
selves with the question whether a differential equation has a solu-
tion or what are the conditions under which it will have a solution
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of a particular character ; in fact we shall assume without proof the
following fundamental theorem of differential equations viz.,

An ordimary differential equalion of order n has a solution involv-
ing n independent arbitrary constants, and this solution is unique.

14'3(1). Illustrative Examples.

Ex. 1. Find the differential equation of all straight lines passing
through the origin.

Let y=mx .- (1)
be the equation of any straight line passing through the origin.

Differentiating (1), gz=m. (2)
Eliminating m between (1) and (2), we get

gz, the required differcntial equation.

Ex. 2. Find the differential equation from the relation
x=qa cos t+0b sin {,
a and b being arbitrary constants.

y=x

Differentiating the given relation twice with respect to ¢, wo get
r,=—asint+bcost, and

Tgo=—a cot {—~b sin ¢t= —(a cos {+b sin t)= —x.
2
O Za+2=0, d.e., gtf" +2=0 is the required differential equation.

Ex. 3. Eliminate a and b from y=a tan-'z+0.
Differentiating the givon relation with respect to z,
_a
Y =1vg
Differentiating, (1+2%) y,+2zy, =0.
This is the required eliminant.

(1+z*y,=a.

EXAMPLES XIV

1. Show that the differential equation of a system of
concentric circles is = dz +y dy=0. Interpret the result

geometrically.
2. Prove that the differential equation of all circles

touching the z-axis at the origin is (z* —¥*) dy — 2zy dz = 0.
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3. (i) Show that the differential equation of all parabolas
(a) having their axes parallel to y-axis is ¥5 =0.
(b) with foci at the origin and axes along the z-axis
is yy,® + 22y, -y =0.
(ii) Show that the differential equation of the family of
circles z® +y% + 2gz + Afy+c=0is (1 +y,*)ys — 8y1ys" =0.

(iii) Show that the differential equation of the family of
cardioides r =a(l + cos 6) is (1 + cos 6) dr +# sin 6 d8 =0.

4. Show that the differential equation of the system
of rectangular hyperbolas zy=c? is z dy+y dr=0, and
interpret the result geometrically ; deduce that the tangent
intercepted between the axes is bisected at the point of
confact.

b. Verily that ¥y +z +1=0 is a solution of the differen-
tial equation (y — z) dy — (y% -~ 22?) dz =0.

6. Show that V= f + B 1is a solution of the differen-

tial equation
a’v , 2 dv_
dr® " r dr

7. Find the differential equatbion from the relation

0.

(i) y=4 sin 2+ B cos £+ sin 2.
(ii)) y=Ae"+ Be™*.
(iii) y =4 cos ¢+ B sin £ +C cosh 2+ D cosh z,
where 4, B, C, D are arbitrary constants.
8. Eliminate a and b from each of the relations
(i) y=alog z+b. (ii) zy =ae® +be".
(iii) ax®+oy2=1. [C.P.1945] (iv) r=a+b cos 0.
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9. (i) Show that the differential equation, whose generaly
golution is y=c 2+ cy? is y=ay, — 32%y,.

(ii) Show that
Y =CO8 &, Yy=sinz, y=c;, COS T, I =Cy 8in &
are all solutions of the differential equation
ya +y=0.
[ In (3) and (1) c., cq are arbitrary constants |

10. (i) Show that the differential equations, whose gene-
ral solutions are

(i) y=4 sin 2+ B cos «,
(ii) y = 4 sinh 2 + B cosh z,

where A and B are arbitrary constants, are respectively

d*y d®y
. °+ = e —-— _— .
de” y=0 and dx? y=0
ANSWERS

1, The radius vector and the tangent at any point are mutually
perpendicular,

4. Tho radius vector and the tangent at any point are equally
inclined to the z-axis.

7. (i) y+y,=2 cos 2. (ii) y,=y=0. (iii) y, —y=0.
8. (i) zy,+y,=0. (ii) 2y,+2y, =2y
(iii) zlyya+9,")=yy. (iv) ro=r, cot 6.



CHAPTER XV

EQUATIONS OF THE FIRST ORDER AND
THE FIRST DEGREE

16°1. A differential equation of the first order and first
degree can be put in the form

M dxz+ N dy=0,
where both M and N are functions of z and ¥, or constants
not involving the derivatives. The general solution of an
equation of this type contains only one arbitrary constant.

In this chapter we shall consider only certain special types
of equations of the first degree.

156°2. Separation of the Variables.
If the equation M dz + N dy=0 can be put in the form
f.(x) dx+12(y) dy =0,

then it can be immediately solved by integrating each term
separately. Thus, the solufion of the above equation is

[ filz) dz + [ fa(y) dy =C.

The process of reducing the equation M dz+ N dy=0 to
the form fi(x) dz+f,(y) dy=0 is called the Separation of
the Variables.

Note. Sometimes transformation to the polar co-ordinates facili-
tates separation of variables. In this connection it is convenient to
remember the following differentials.

If x=7cos 8, y=7sin 0,
() z de+y dy=r dr. (ii) dz*+dy?=dr?*++d6.

(iii) « dy—y dx=1r? do.
[ For illustration see Ex. 8(ii) and (iii) of Examples XV(A4) ]
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Ex. 1. Solve (1+y?) dz+(1+22) dy=0.
Dividing by (1+22)(1+43), we get
PGt P =0,
integrating, tan~'z+tan"'y=_C. (1)
Note. Writing the arbitrary constant C in the form tan~'g, the
above solution can be written as tan~'z +tan~'y=tanla,

or, tan-1-ZTY
' l-2zy

Both forms of solution, (1) and (2), are perfectly general ; and any
one of these can be considered as the complete solution of tho given

equation. [ See Art, 14°8 ]

=tan-'a,” or, z+y=a (1—2xy). .. (2)

Ex. 2. Solve z(y*+1) de+y(z*+1) dy=0.
Dividing both sides by (z?+1)(y*+1), we have

* dz+

x*+1 dy=0.

Y.
y?+1
integrating, we have
3 log (x*+1)+3% log (y2+1)=C.
Writing & log 4 in the place of C, the alove solution can be written
in the form
(x?+1)(y2+1)=A.

Note. In order to express the solution in a neat form, we have
taken & log 4 (4 being a constant) in the place of the arbitrary

constant C.
Ex.3. Solve (c+3)* W=a. [ C. P. 1936 ]

. o . dy_dv_
Put z+y=v, e, y=v—2. .. dz= da 1.

.*. the equation reduces to
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dv

. » . o = P ov_ .,
.*. integrating, Sd.v de a Sa“+v"

1 ) x4y
or, z+C=v—a%* - tan~! - =g+ 9y—q tan-* = -¥.
y a t A z+y ta a

9y=a tan~! ?%-”+ C, is the reqd. solution.

Ex. 4. Find the foci of the curve which satisfies the differential
equation (1+y?) de—=xy Jy=0 and passes through the point (1, 0).

Separating tho variables of the equation, we have

de_ ydy _

T 1+y’-0'

.*. inlograting, log 2— & log (1+y?)=1log C,
or, log Jid g =log C. .. z=CWN1+y°.

This is the equation of any curve satisfying the (given differontial
equation. If the curve passes through (1, 0), we have 1=0,

.*. the equation of the required curvo is z? —y?=1.
It is a rectangular hyperbola, and its foci are evidently (£ /2, 0).

Ex. b. Show that all curves for which the length of the normal is
equal to the radius vector are either circles or rectangular hyperbolas.

Since the length of the normal=y/1+4,? and the radius vector
= Nz?+ g%,

o YLy, %)= +y?, or, 9Py, M =a? or, gy, =t

dy
dx

integrating, x?+y?=a? a® being the arbitrary constant of

=+ 3 . xdetydy=0.

integration.
Thus, the curves are'either circles or rectangular hyperbolas.

Ex. 6. Show that by substituling ax+by+c=z, in the equation

o = f(ax+ by +c) the variables can be separated.

daz

L ) - . 4:_1’=4-z.
S ax+by+ce=s, e a+bdw dx
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dy _ (dz a.)-
de b \dz
Hence the given cquation transforms into
1/{d
(&:_ a') —f(Z),

: o dz
O aFbf(z)

Thus, the variables are separated.

EXAMPLES XV(A)

813

Solve the following differential equations (Ex. 1-10) —

N dy_z?t+az+l J -
1. (i) dz™~ g g+l (ii) = s Y1

d1 (y—1)_
(i) G+t )=

2. (1) y d:z:+(1 +z?) tan" 'z dy =0.
(i) Y de+e'® dy=0.

3. () zJ/1-y% dz+y 1—2* dy=0.
(ii) 22 (y—1) dz+y® (x—1) dy=0.

dy ,y®+y+1_
da:+a:"+m+l 0.

: _d’!l /\/1_—'y2= o dy _z(1+9?)
5. (i) 7+ 1-—a? 0. (id) de y(l+z2)

(lll) d?l J(m” ‘—w]y)_('y2 -1) =0.

6. (i) sec®z tan ¥ dz + sec®y tan z dy =0.
(ii) z cos®y dz — ¥ cos®z dy=0.

(iii) log (sec z +tan z) do = _log (sec y + tan y)
CO8 2 cos ¥

4.

7. (22 —yz?) dy+{@®+a2y?) dz=0.
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8. (i) v de—z dy==zy dz.
(ii) z*(@ dz+ v dy) + 2y (z dy — y dz) =0.

ey TFYYy ~/ 1—:1:2-1/"’)
iii S = —
( )wy1~y z® +y*

9.() L1, G) = vita.

10. (i) sin~* (g:;) =z +9. (ii) log (ZZ) =ax + by.

11. Find the particular solution of
cos ¥ dx + (1 + 2 %) sin ydy =0,
when =0, y=1n.

12. Find the equation of the curve for which
(i) the cartesian subtangent is constant,
(ii) the cartesian subnormal is constant, [ C. P. 1924 ]
(iii) the polar subtangent is constant, [ P.P.1933]
(iv) the polar subnormal is constant. [ P. P. 1981 ]

13. Show that the curve for which the normal at every
point passes through a fixed point is a circle.

14. Show that the curve for which the radius of curva-
ture at every point is constant is a circle.

15. Show that the curve for which the tangent at every
point makes a constant angle with the radius vector is
an equi-angular spiral.

16. Show that the curve in which the angle between the
tangent and the radius vector at every point is one-half of
the vectorial angle, is a cardioide. [C. P. 1931 ]

17. Show that the ct cve in which the angle hetween the
tangent and the radius vector at every point is one-third
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of the inclination of the tangent to the initial line, is
a cardioide.

18. Show that the curve in which the portion of the
tangent included between the co-ordinate axes is bisected by
the point of contact is a rectangular hyperbola.

ANSWERS
L () 3 (x°—-9y*)+3 (2* —9*)+x—y=C. (ii) y=1+Ce'I".
(iii) zy=clez—1)(y—1). 2. (i) y tan~'x=C.
(ii) e**+eW=C. 3. (i) NIZz2+ N1-y?=C.

(ii) (x+1)*+(y+1)*+21og (x—1)(y—1)=C.
4. 2zy+zc+y+Clz+y+1)=1. 5. (i) sin"'z+sin~'y=C.

(ii) 1+y*=C(1+z?). (iii) Mx?—1)—sce™'z+ (y?—1)=C.
6. (i) tan ¢ tan y=C.

(ii) = tan x—log sec z=y tan y—log sec ¥+ C.

(iii) [log (scc =+ tan «)]? —[log (sec y+ tan y)]* =C.

7. log 3 ~T*+i_c. 8. (i) ye*=Czx. (ii) (z*+y*)(z+2)* =Cz*.

Ty
(iii) z?+y?=sin%a, where a=tan~'(y/z)+C.

9. (i) ¢¥=3%e*+ Ce~2. (i) Ny—z+log (Ny—z—1)=3z+C.
10. (i) tan (z+gy)—sec (z+y)=C+a. (ii) ae~®+be**=C.
11. (¢ +2) sec y=3 /2. 12. (i) y=Ce*l".

(ii) y?*=2ax+C. (iii) »(C—-0)=a. (iv) r=ab+C.

16°3. Homogeneous Equations.

If M and N of the equation M dx + N dy =0 are both of
the same degree in  and ¥, and are homogeneous, the
equation is said to be homogeneous. Such an equation can
be put in the form

x-f{¥)
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Every homogeneous equation of the above type can
be easily solved by putting ¥ =vx where v is a function of z,

and consequently g—g =p+2 dv, wherehy it reduces to the

dzx
dv .  dz dv . . .
form v+ -, =f(v) i.e., - = 73 -— in which the variables
dex f(o) z flv)—o
are separated.
Ex. Solve (z?+4?) de—2zy dy=0. [ C.P. 1921,'37
The equation can be written as
dy_z’+97,
dr 2xy
dy dv

Putting y=wvz, so that dw=v+x AL have,

dv_ax?+v?s? _1+0?

”+wd.c-- Qugd Qv
. dv_1+n? _0_1—71_"
de 2o T 9

dx 2
2 i—p? dv=0.

integrating, log z+log (1—1v?)=log C.
z(l1—-v2)=C.
Re-substituting y/x for v and simplifying, we get the solution
z?—y?*=Cx.

156°4. A special Form.

The equation of the form

gz-a1x+b1y+01 (@_1 # bl)
dx agx+b2y+cz Qg b2

(1)

can. be easily solved by putting #=z'+h, and y=y'+#,
where A and % are constants, so that dz=dz’ and dy=dy’,
and choosing %, k in such a way that

a h+bk+ey =0 }
and agh+bgzk+cy=0.

(2)
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For, now the equation reduces to the form
ay' _a,a' +b.y
dz’  a.z'+byy'
which is homogeneous in £’ and %' and hence solvable by
the method of the previous article.

Note. The above method obviously fails, if a,/a.=0,/b,; [or in
this case h and % cannot be determined from cquation (2).

Let the equation be

(_l_y=8‘x+b1l+c1 (dl ___b.) (3)
dx a’x+b2§r+CQ alg bg

a, O, 1
_ - .

a, b, m

where m is a uon-zcro constant.

v ag=a,m, by=bym,

Let

Assuming this to be the case, lct the common value of these
ratios bo denoted by 1/m, so that a,=a,m and by=0b ,m.
The cquation (3) becomes

dy_ ax+byte,
dx 'IN-(av]_m"l‘bly)"l'Cg

Now, putling a,2+b,y=1v, the variablcs can be casily separated and
henco tho equation can be solved. [ Sce Kz. 2, helow. ]

Note. If in the equation (1), ay=—b,, then the cquation can

be solved more easily by grouping the torms suitably.
[ See Examples XV(C), Ex. 1 (i) ]

Ex.1. Solve g;&g:;gz:z [ C. P. 1934 ]
Putting z=x"+h, y=y'+k, so that de=dz’, dy=dy’, we have,
{iy'g 6z’ — 2y + 61— 2k—T
dx’ 2x'+ 3y’ +2h+3k—6
Putting 64 —2k~T7=0, and 2r+8k—6=0,
and solving these two equations, we have h=§, k=1.

: ; dy _6r'—2y
.*. the equation becomes dz’ =92 + 3y
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Since the equation is now homogeneous, putting 4’ =vz’ and henco,
3:1:— =v+a’ %’ and simplifying, the equation reduces to

de’ _ 1 6v+4

o 9 307+ 40—6 db, which on integration gives,
—log A2’ =3 log (3v%+4v—6).
‘. (dz)"2 =80+ 4v- G)’}.

Now, restoring the values of z' and v, where o'=z—% and

’ ¢ -
v= y'=2(y 1) » we get the solution in the form
z 2x—3

3y? + 4zy— 62— 12y+ 14z =C.
dt] 6:1:--21/—1
Ex. 2. Solve dz= 3:v—1/+4

Since here a,/a, =b,/b,, .°. putting 8z—y=v, we get

ay_

dv
83— dz— dz uwnd hence the given equation gives

dv =5 20=T_r+19
dz v+4  o+4

v+4 15
dr= 019 dv= (1_-u+19) dv.
z+ C=v-15 log (v+19).

On restoring the value of v, we get the solution in the form

92 —9y—15 log (3x—y+19)=C.

Ex. 3. Show thatin an equation of the form
yi(xy) dx+x1.(xy) dy=0
the variables can be separaled by tle substitution xy=».
Since, zy=v, y= ;: and d(ey)=dv d.e., y dx+z dy=dv

and dy—m—@é—?—)—-‘-i—z i.e.,, £ dy=dv— :}: dz.

fx(v) de+fa(v) {de—  dat=0.
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. fulw)dv | de
T WA 16 o
Thus, the variables are separated.
[ See Ex. 14, 15, 16 of Examples XV(B) ]
We can as well form an equation in » and g, by taking zy=ov,
z=" and da:—y-dlgv a,
Y Yy

[ For illustration see Alternative proof of Ex. 5 of Art..15°5. ]

=0,

EXAMPLES XV(B)

Solve :—

1. (i) a:+yd/ 9. (i) ZZZZ+ y =;{d
20 Gt O
3. (z%+9*)dy==zydz. [C.DP.1925, '30])
4. (3 gg: m+7/ (i) ZZ Z&Hz;

5. (i) (3z sinh(y/z)+ 5y cosh(y/x)) dz — 5z cosh(y/z) dy=0.
(i) (1+ 36°/) doc + 3¢*™ (1 — z/y) dy =0.

6. (z%2-22y) dy+(z?—3zy+2y%) dz=0.

7. y®de+(z® +a:y) dy = 0.

8.() 4= " ttan - (ii) g;’agﬁ.*;:%z

9. (6m—51/+4)d'y+(g/-2m—1)dm=0.

10. (z -3y +4) dy+(Ty - 5z) dz=0.

11. (@z-2y+5)dy—(x—v+3)dz=0.

12. (z+y+1)dz—(2x+2y+1) dy=0.

13. y(%zy+1)dr+x(1+2%y+2*y®) dy=0.
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14. 2%y® dow+ 32%y dy + 2y dx=0.
15. (1 +2y cos zy) dz +2? cos zy dy=0.

16. Show that (dz+3y+1)dr+(3z+2y+1) dy=0 re-
presents hyperbolas having as asymptotes
x+y=0, 2e+y+1=0.

ANSWERS
1. (i) y=a+ Ce*ltv-2), (ii) 2z—y=Czy.
2, (i) y2e*"=Cx>. (ii) y°=Ce=*1v>,

3. y=Ce*?Iw?, 4. (i) ¥+ 2xy—z2=C. (ii) xy=Ce'l*.
5. (i) > =C sinh"(yfr).  (ii) =+ 3ye~lV=C. 6. y=zlog (Ca-1).

. zy?=Clz+2y). 8. (i) z=C sin:-

=l

(i) 3 log (x?+y?) =4 ta.n"Z +C.
9. (5y—2x-3)*=C(dy—1z-3). 10. (3y—5x+10)2=Cly—z+1).
11. 9y-z+C=log (z—y+2). 12. 6y-3z =log (3x+8y+2)+C.
13. 2z%y? log y—4xy—1=Cz*y?. 14, a(ry—2)*=Cley—1)%.

15. zc®" =V =C.

15'5. Exact Equations.

The differential equation M dz+ N dy =0, where both M
and N are functions of 2 and ¥, is said to be exact when
there is a function % of z, ¥, such that M dz + N dy = dwu, i.e.,
when M dz+ N dy becomes a perfect differential.

Now, we know {rom Differential Calculus that Mdzx + N dy

;
should be a perfect differential if %[ =§i\' Hence, the
condition that M dr+ N dy =0 should be an exact differential

SM 8N,

* equation, 18 sy ox
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Note. It is beyond the scope of the present treatise to enter into
the details of the theory of singular solutions.

Ex. 1. Solve y=pz+p—p2. [C.P. 1936 ]
Differentiating both sides with respect to z,

dp+dp -9 dp,

p=p+mdw dx pda:

d (x+1—2p)=0.

. d .
cither, dz=0, i.e., p=C - (1)
or, ¢+1-2p=0, i.e., p=3 (x+1). - (2)

Eliminating p betwecn (1) and the given cquation, we get
y=Cx+ C— C? as the complete solution
and eliminating » between (2) and the given equation, we get
y=2%(x+1)r+3(@+1)—3(x+1)*=2(z+1)?,

i.c., 4y=(x+1)*, as the singular solution.

Note. It can easily be verified that the family of straight lines
reprosented by the complete solution touches the parabola represented
by the singular solution.

Ex. 2. Solve y=(1+4p)x+ap®.

Differentiating with respect to z, we have
- -9a,) P
p=(1+p)+ (x4 2ap) iz

de ,
d—l—) Fa= —2ap.

This is a linear cquation in 2 and p. [ See 4r¢. 15°6 ]

multiplying both sides by Lz .., eP, we get

e’ g£+e”. = —2ap.c"
or d (xe?)= —2ap . c*.
] dp

22
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‘. integrating, xe? = —2afpe?dp+C= —2ae” (p—1)+C,
or, z=2g(1—p)+ Ce-?.
y=2a—ap®+(1+p) Ce~? from the given equation.
The p-eliminant of these two constitutes the solution,

EXAMPLES XVI

Solve the following and find the singular solutions of
Ex. 5 to 8 only :(—

1. G) p?+p-6=0. (ii) p? + %zp - 3z* =0.
2.(G) p?-p(®+e®)+1=0.

(i) p?y-p(@y+1)+2=0. (iii) p(p*® +zy)=p*(x+v).
3.(G) p?’-(a+b)p +ab=0. (i1) plp + ) =y(z + v).
4. (i) zyp® - (z* -y lp—z2y=0.

(i) p® - pz® + 2y +9%) + 2y + 2y* =0.

(iii) p°® - @® +2y +y®) p® + (&y +2¥® +2y®) p - 2°y°

= (),
5. (i) v=pr+a/p. (i) v=pz + Ja®p®+5°.
(iii) ¥ =pz+p™
6. G) y=pz+ap (1-7p) (ii) py=p%*(z-0)+a.

7. (-a)p®*+(x-y)p-y=0.
8. (y+1p—zp®+2=0.
9. (i) p’z—p?y~1=0. (i) y=yp®+2z. [C. P. 1948}

10. sin ¥ cos pz — cos ¥ sin pz — p=0.

11. (i) z=4p +4p°. (i) p2-2zp+1=0.
12. (i) & — p® - p=0. (ii) y=p cos p—sin p.
13. (1) y=p°z +p. (i) y=(p +p*) z +p™*.
14. (i) z+yp=ap®. (ii) v=29p=z + p2.

15. p°—-p(y+3)+z=0.
18. y=4p® + Bp®.
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ANSWERS
1. (i) (y+8z—c)(y—2x —c)=0. (ii) (2y+3z? —c)(2y—a?2—¢c)=0.
2. (i) (y—e"—c)y+e*—c)=0. (ii) Qy—=z?—-c)(2x—y?—¢)=0.
(iii) (y—c)(2y—z* —c)(y —ce*)=0 8. (i) (y—ax—c)ly—bz—c)=0.
(i) (y—ce*y+x—cs~*—1)=0. 4. (i) (@zy—c)(z?—9y*—c)=0.
(ii) Qy —x?—c)y—ce)y+x—1—ce ")=0.

(iii) (z*>— Sy + c)(a?‘m, + ey)(xy+ cy+1)=0.

5. (i) y=cx+ ‘:; y? =4ax. (ii) y=cx+ J(a2c*+b3); 2:+g:-=1.
(iii) y=czx+c"; n™y" '+ 2" (n—1)""1=0.
6. (i) y=cr+ac(l—c) ; (x+a)?=4ay.
(ii) cy=c?*(@—0)+a ; y*=4alx—1b).
7. @—a)c*+(x—y)c—y=0; (z+y)*=4ay.
8. (y+1)c—c?x+2=0; (y+1)?+8x=0.
9. (i) c*xz—c*y—1=0. (i1) y*=2cx+c?. 10. y=cx+sin~’e.
11. (i) z=4p+4p° } (ii) &=3 (p+p-2), }
y=2p?*+3p*-+ec y=3p®—2%log p+e
12. (i) e=2 tan~p—p~'+c } (ii) 2=c+cos p }
y=log (p*+p). y=p cos p—sin p
18. (i) y=p?z+p (i) y=(p+p?) z+p~*
=ty } =

14. (i) z+yp=ap?
z(1 +p’)% =plec+alog{p+(1 +p"‘)&}].
(ii) (Bxy+2zx®+c)* —4(x?+y)*=0.
15. y(1—p?)%+ (1 - p?)t=¢, with the given relation.
16. y=d4dp*+ Bp?
x=3A4Ap*+2Bp+c.



CHAPTER XVII

LINEAR EQUATIONS WITH CONSTANT
COEFFICIENTS

17'1. Equations of the Second Order.

We shall first consider linear differential equations with
constant coefficients of the second order, since they occur
very {requently in many branches of applied mathematics.
The typical form of such equation is

2
CI+p, Iipy-x, ()

or, symbolically, (D?2+P,D+P,)y=X,

where P;, P, are constants and X is a function of z only
or a constant. Two forms ol this equation usually present
themselves, namely when the right-hand member is zero,

and when the right-hand member is a function of ». We
shall first consider the first form and then the second.

17°2. Equations with right-hand member zero.

T.et the equation be

2

As a trial solution™ of (2), let us take ¥ =e™*. Then
if we put y =e™” in the left side of (2), it must satisfy the
equation ; %.e.; we must have,

(m®+ P m+ P,)e™ =0,
or, since e™ # 0, m>+ Pym+ P, =0. - (3)

*This trm.l solutwn is sugge:.ted by t.he solutlon of the first order
linear equation %, + Py=0, which is of the same form.



LINEAR EQUATIONS 341

The equation (3) is called the Auziliary equation of (2).

Let m4, ma be the two roots of the equation (3).

Then, y=e"*, and y=e™*" are obviously solutions

of (2). Also, it can be easily verified by direct substitution
that y=C,e™®, y=C3e™"" and y=C,e™* + Cze™*® gatisly
the equation (2), and as such, are solutions of (2).

’w

We shall now consider the nature of the general solution
of the equation (2) according as the roots of the auxiliary
equation (3) are (i) real and distinct, (ii) real and equal
and (iii) ‘maginary.

(i) Auxiliary equation having real and distinet roots.

If m, and m, are real and distinct, then 3y =C.e™* +
Cqe™*” is the general solution, since it satisfies the equation,
and contains two independent arbitrary constants equal in
number to the order of the equation.

(i1) Auxiliary equation having two equal roots.

If the auxiliary equation has two equal roots, the method
of the preceding paragraph does not lead to the general
solution. For, if m,=mgs =« say, then the solution of the
preceding paragraph assumes the form

y=(Cy+ Co) ¢*® =Ce*, when C; +C, =C
which is not the general solution, since it involves only
one independent constant and the equation is of the second
order.

A method will now be devised for finding the general
solution in the case under discussion. Since the auxiliary
solution (3) has two equal roots each being equal to e, it
follows that the differential equation (2) assumes the form

2
ga;Z" 2agz+aay=0.
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Let y =¢*®v, where v is a function of z, be a trial solution
of this equation. Substituting this value of ¥ in the left
side of the above equation, we have

d®v . d%
aX = i
¢ d* 0, ze., dp3

Now, integrating this twice, we get v=C, + Ca2.

=(), since e** # 0.

Hence, the solution of (2) in this case is
Y= (01 + Ggm) e®*,

This is the general solution of (2), since it satisfies (2),
and contains two independent arbitrary constants.

(i1i) Auxiliary equation having a pair of complex roots.

If my=a+ip and m, =a—iB, then the general solution
of (2) is
Y= Cle(a-l"iﬁ)z + Cze(a'-iﬁ)x-

The above solution, by adjusting the arbitrary constants
can be put in a more convenient form not involving imagin-
ary expressions ; thus we have

y = 2" [C,0*% + Cpe ™ th%]
=% [C, (cos Bz + ¢ sin Bx)+ C, (cos Bz — i sin px)]
=¢2® [(C, + Ca) cos pz + i(C, — O-) sin px]
=¢** [4 cos B2+ B sin fal,

where A=C,+C, and ID=i(C,—C;) are the arbitrary

constants which may be given any real values we like.
Again, by adjusting the arbitrary constants 4 and B

suitably, 7.e., by putting C cos & for 4 and — C sin ¢ for B,

the general solution can also be written in the form
y = Ce®® cos (B + &),

where C and ¢ are the two arbitrary constants.
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Ex. 1. Solve fil '.,I+ B;ly_,_ 2y=0.
Let =¢™ be a solution of the above equation ;
then €™ (m2+8m+2)=0, .". m?>+3m+2=0, sinco e™ 5% 0.
(m+1)(m+2)=0, Som=-1, or, —2,

the gencral solution is y=C,e™*+ (C,e~?

dj‘___ dy
Ex. 2. Solve qzt Qadm+au 0.

Let ¢=¢™* be a solution of the above equation ;

then e™ (m?—2am+a?)=0, or, m*—2am+a?=0, since ™" 3 0,
(m—a)?=0.

Sinco the auxiliary equation has repeated roots here,

the general solution is y=(C, + C,z) ¢

Ex. 3. Solve (D*+4+2D+5)y=0.

2
The equation is, Z Z+2gu+d'/ 0.

Let y=¢™ be a solation of the egnation ;
then ¢™* (in?+2m+5)=0. oo mP 4 2m+5=0 since ¢™ # 0,
m=—=149 ;
*. the general solution is y= C,ef~ 11254 C e =12

which, as shown in Art. 17°2(iii) can bo put in the form

y=c¢ " (4 cos 2x+ B sin 2x).

EXAMPLES XVII(A)

Solve :—

d’y du

d”y dy
2. az 7d +12=0.
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2
3. 3’; 33%2 =0. [ C. P. 1930 ]
1. LYr@rp®
- gp2tla +a.by=0 [C. P. 1937 ]
08 _ ady d’y , ,dy
5. (i) 2da:2 3dm+y 0. ()d2+2d +9=0.
[ C. P. 1940 }
6. ?/9—4'.”1 +4'y=0. [C P. 1939]
7. (i) (D% +D)y=0. (ii) (D?* +6D +25)y =0.
8. (D*-2mD+m?+n?)y=0.
9. (i) (D2 -4D+13)y=0. (i) (D%2-x2)y=0.
10. (i) dt2+4ds+13 ~0. (i) (D +8)%y=0.
11. Solve in the particular cases :(—
3
(i) 3@'”*- d;’-’—2y=0; when 2=0, ¥=3 and (g’ll

(11) ”+7/ 0 ; when =0, y=4; when z=3%n, y=0.

T (_73: - da
(m) dt" 3 +22=0: when t=0, z= Zanddt

. 9' a . = d -
(1v) gt T 0 ; when =0, gt 0 and z=a.
12. TFind the curve for which the curvature is zero at
every point.

do
dt

B
13. Show fthat if ldg +g6=0, and if 6 =a and

when £=0, then 8 =a cos {t /(g/1)}.

=0,
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14. Show that the solution of
d’z , ,dx

T + k
is 2=e"%t (4 cos nt + B sin ut) il k® < 4y,

+ua: 0

and n® = - 12,

ANSWELS

13
.

1. y=c,e7"+c.e”?”. 2. y=c,e* "+, 3. y=c.,e"4 cye
d. y=c,e " +e 7. 5.() y=c.e"+ec.ei (ii) y=(d+ Br)e~’
6. y=e (4+ Br). 7. () y=A+De™"

(ii) y=e=** (4 cos 4z + I3 rin 4x).

8. y=e¢™ (4 cos nz+ B sin nx).

9, (i) y=e?* (4 cos 3z+ B sin Jx). (i) y= Ade™ 4+ DBe ™",
10. (i) s=e-? (1 cot 3¢+ B sin 31t). (i) y=c-** (4+ Bz).
11. (i) y=2e*+e2*, (ii) =1 cos z. (ii1) x=4e— 22"

(iv) z=a cos nt. 12. A straight line.

17°3. Right-hand member a function of x.

Wo shall now consider the solution of the general form

2
%+P1gy+PgV=X oo (])
If v =¢(x) be the general solution of
2
g Z'l Pl_[é”‘l-PZJ O ree (2)

and ¥ =v (z) be any particular solution of (1), then

y=¢ (z) +v (z) is the general solution of (1).

This result can be established by direct substitution.
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Thus, substituting ¥ =4¢ (z) + v (z) in the left side of (1),
we have

2 d d2
st + 2 g+ Pua} {8+ 232+ Par}

The first group of terms is zero, since ¥ = ¢ (z) is a solu-
tion of (2), and the second group of terms is equal to X,
since ¥ =v (z) is a solution of (1).

Hence, ¥ =¢ () + v (z) is a solution of (1), and it is the
general solution, since the number of independent arbitrary
constants in it is two, ¢ (z) being the general solution of (2).

Thus, we sce that the process of solving equation (1)
is naturally divided into two parts; the first is to find the
general solution of (2), say ¢ (C4, Cq, 7), and the next is to
find any particular solution of (1), say v (z) not containing
any arbitrary constant. Then

y=¢(C., Cq, 2)+ v (2)

will be the general solution of (1).

The expression ¢ (C,, Cq, ) is called tho Complementary
function and v (), i.e., any particular solution of (1) is called
the Particular Iniegral of the equation (1).

17°4. Symbolical Operators.

We have already shown in art. 17°2 how to obtain the
Complementary function; now we shall consider how fo
obtain the Particular integral. In order to discuss methods
of finding a particular integral, it would be convenient
to introduce certain syrbolical operators and their pro-
perties.
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With the usual notation of Differential Calculus
2

a d .
o az® ete. will be denoted by the symbols D, D%, ete.

Also 11) (or, DY), -Dlg (or, D?), ete. will be used to denote

the inverse operators, z.e., the operators which integrate
a function with respect to z, once, twice, etc. Let us write
the equation

a2y

O 1+P, W4 Py =X, e (1)

in its symbolic form
(D®+ P,D+ Py =X, - (92
or, more bricfly as f(D)y=X. - (3)

The ecxpression f(;)) X will be used to denote a function
of # not involving arbitrary constants, such that the result
of operating upon it with f(D) is X, and as such f(Jl_)) and

7(D) denote two inverse operators.

Thus, the function X 1s clearly a Particular Inlegral

1
f(D)
of the equation f(D)y=X.

As a particular case when f(D)=D, ;)X will denote

a function of z, obtained by integrating X once with respect
to x, which does not confiain any arbitrary constant of

integration ; similarly égX will denote a function of z,

obtained by integrating X twice with respect to z, and not
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containing any arbitrary constant of integration. For
example,

1 4, 1 4 1 5_ 1 z° 1 1
. = . < = , [ 1 =
5% 5% peo=g50%s pl=ai pul= g0
Important Results on Symbolical Operation.
If (D) be any rational integral function of D,

i.e., if F(D)=D"+a, D" '+ ++++ @y, D+aq, then
(i) F (D) ¢**=F (a) e*=.

(ii) F (D) e* V=c¢"*F(D+a) V, V being a function of z.

CRC et BT bt

By actual differentiation, we can easily verify the above rcsults.

17°5. Methods of finding Particular Integrals.
We shall discuss here the methods of obtaining parti-
cular integrals, z.e., the methods of evaluating f&)) N, when

X bas special forms.™
(@) X=x™, m being a positive winteger.

Expand » i.e., If(D}* in ascending powers of DD anad

f(D)
operate on ™ with the result. It is clear that in the ex-
pansion, no terms beyond the one containing D™ need be
retained, since D™ g™ =0,

Note. The justification of the atove method lies in the fact that
the function of & which we s' 41l get by operating on ™ by the series

* For proof see Authors’ Differential Caloulus.
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of powers of D obtained by expanding { f(D)-*}, when operated upon
by f(D), will give 2™, For example,

1 \
iy d =(1+D)'xt=(1-D"+ D' - )zt =gt — 1957 +24.
Now, (D?+1)(z* — 1222 +24)==122% — 24 + 24 — 1227+ =24,
(b) X=e V, where V is a function of x, or a constant.

If V, is a function ol x, we have from Art. 17°4(i1),

f(D)e™V,=e""f(D+a) V,=e*V, say,

r . -I
-4 S = 17
so that, f(D+a)V,=V, ie, V.= f(D+a)
Thus, ;ice¥XVez®*V,= o8 1y
' {(D) U7 H(D4a)

Again, noticing that f(D +a)L’ where &’ is a constant
is evidently a constant =% say, and proceeding exactly as

ahove we can show that

1 axy — X 1 ax
i° k=e "fHra =k 1mry

() X=e2%. w:licre a is any constant.

If f@)#0, FD) ! M, - 1) =
[ From Art. 17°4(i) ]

oo i(—})—)e !(a)e’ , provided fla) # 0.

If f(a)=0, then (D - a) is a factor of f(D).
either, f(D)=(D — a) ¢(D), where ¢{a) # 0 -+ (i)

or else, =(D-a)’ -~ (ii)
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@) _1 o0 =1 ._l_..eax.__, 1 & _ 1 &

Ao "D - " Ry b
e""" 1

(11) f(D) ('D _]_ a)2 3¢‘=*=_-.‘3a:::D2_1 [ by (b) ] =8aa:_i_1§2_2_

(d) X=sin (ax+b) or cos (ax<+b).
If f(D) contains only even powers of D, let us denote it
by #(D?). Then if ¢(—a®) #,0, we get by Art. 17°4(7i3),
g\8in (az +5) _¢(—a?) sin (m'+b)
= 2/ = +
¢(D ) ¢( a‘g) 4)( a ) Bln (am b)

A ¢&),) sin’(ax+b) =——5 = 1 sin (ax+b), if ¢(—a?)#0.
Similarly, ¢(ll),) cos (ax+Db)= 1 (=27 cos (ax+b), if ¢(—a?)#0.

If ¢(~a?)=0, or if f(D) contains both the first and the
second powers of D, the method of procedure that is to be
adopted in such cases is illustrated in Ex. 5 and Ex. 6

of § 17°6 below.
(¢) X=x™ sin (ax+Db) or x™ cos (ax+b).

(f) X=xV, where V is any funclion of

1 -
i(‘ﬁ“’={" iy '™ }t(m

In evaluating particular integrals of this type it 1is
convenient to replace sin (az +b) and cos (az+b) by their
exponential values and then proceed as in case (b).

Note. It should be noted that when X is the sum or difference
of two or more functions of r, say X=X, +X,+ X;, then the parti-

oular integral = f(D) X, £ X, X,}= f(D)X if(D)X if(D)

* For proof see the Appendlx
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17°5 (1). Alternative method of finding ﬂ_lm X.

When the auxiliary equation has real and distinct roots,
corresponding to each such root m, there will be a partial

fraction of the form Dl-i-rh.’ where 4 is a known constant

and hence
f(lI)) X can be written in the form

A.1_ - Ag
D-m, ‘X+D—mg

each term of which can be evaluated by the method shown
below.

1 X = l, e gTME T = e 1 g~ X

Now, D-m* D-m D
D:m X=eMm S 1‘3°"‘" Xdx. e (1)

This method is illustrated in K. 8 of Art. 17°6.

17°6. Illustrative Examples.
Ex. 1. Solve (D?*+4)y=ua’. [C. P.1935 )
Here, the auxiliary equation m? +4=0 has roots m= +2i

the complementary function= 4 cos 2x:+ B sin 2z.

PR S
“41+3D%) %
=1(14+3D?)"* 22
=}(1—-3D*+ 5D =) z? =}(z? - 3).

; .
Particular Integral = Dita®

the required general solution is
y=4 cos 2c+ B sin 2z+}(z? —3).
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Ex. 2. Solve (D—3)? y=2¢*".
Here, the auxiliary equation (m—3)?=0 has roots 3, 8.
C. F.= (4 + Bx) **.

--_.1— 2 2342
(D=-3)* °° T(4-9)

.*. the general solution is y=(4+ Bx) e**+ 2¢**.

P. 1= =Q¢*”,

Az
(

Ex. 8. Solve (D-2)? y=6¢2~.
Here, the auxiliary equation (;n—2)* =0 has roots 2, 2.
C.F.=(4+ Dx) 2=

P.I.= (qu), 607 =602 2 1=6e*% 4o’ = 3a* ¢,

.*. the general solution is y=(A4+ Bz) ¢?”+ 3z? ¢?.

2
Ex. 4. Solve gw¥+y=cos 2. [ C. P.1937]

The equation can be written as (D?*+1) y=cos 2z.
The auxiliary equation m?+1=0 has rools =+3i.
C.F.=4 cos z+ B sin g.

1 cos 2z 1
- vy D == —_ —
P. I.-—-D, o8 2r=_ o, =" 4 COS 2.

the general solution is =4 cos x4 13 8in 2 — } cos 2.

Ex. 5. Solrec (D?4-1) y=cos .
As in Ex. 4, C. F'.=A4 cos 2+ D sin z.

But the method of obtaining particular integral employed in Ex, 4
fails here. Weo may however substitute the exponential value of cos x

and procecd. Alternatively we may procced as follows :

Let Y=.b"']‘-|"1 cos ¢ and Z=1')T]'_'l_‘1 sin z,
- h —— 1 -] > H e --.!_'.—._ (£
. Y+"'Z'"D“+1 (cos v+4 sin m)—D, rie
| 1
- iz - - .= of = iz . - .
¢ DFip+11¢ gGp+prl
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= 1 D\—2 11
(£ ] d . X .
=g . (1+2‘.) 1=¢ 2 D 1

—

iz & _&T .
=e“24— i(cosz+1.s1na:).

.. equating the real part, Y=z sin z.

.". the general solution is y=4 cos z+ B sin z+%x sin 2.

a’y_ ,dy
dx? dzx

The equation can be written as (D? —2D+5) y=10 sin .

Ex. 6. Solve -+ 5y =10 sin z.

The auxiliary equation m? —2m+ 5=0 has roots 1+ 2i.
.. C.F.=¢e* (A4 cos 2+ B sin 2g).

1 . _ (D*+5)+2D .
) O I'=1)"-—2D+5 10 sin m—(D"+5)’—4D" 10 sin
_ D?*+2D+5

i =..-—1 L Y BY qf .
—(_1,+5),+410 sinz= (D*+2D+5) sin =

=4 (—sin z-+2 cos 45 sin ) =2 sin x+cos x.

858

.*. the gencral solution is y=¢" (4 cos 2z + B sin 2x)+ 2 sin x4 cos x.

Bx. 7. Solve (D*—4D+4) y=x* ¢**.
The auxiliary equation m? —4m+4=0 has roots 2, 2.

C. F.=(d4x+ D) e**.

1 3,2 1 3,23x

P- I.=D‘_4D-;"_4xe =(1)_2,‘x6

.*. the general solution is y =(4x + B) e** + g%5e? *z°.
1 o® ,

Ex. 8. [Ewvaluate DixsD+2

1 o

Given expression = (D+1)(D+2) € e e

F—] _!.. - e ..__1...__ e.'
+1 D+2

28

(1)



854 INTEGRAL CALCULUS

1 ez 1 o
"D+1 D+92

=¢g=* S e® ¢*" dz—e=?” S ¢ ¢ dz . (2)
Let I.=S e® ¢*” dz and I,=S e ¢*” dz.
Put e*=2z. .. & dr=ds.

In=S & dz=e"=¢"

I,=S z¢" dz=ze'--s ¢ da=z¢"—¢e"=¢* (:a--l)==¢¢'z (e* —1).
from (2), the given expression

=e % ¢ —g~ . 6" (e*—1)

&£
._.e-ﬂ.r e .

17°7. Two special types of Second order equations..
d%y
(A) dx? f(x)-
Integrating both sides with respect to r, we have
dll =[ flz) dz + A = ¢(z) + 4 say.

Integrating again,
y=[ ¢(x) de + Az + B=y(z) + Az + B say.

Note. As a gcneralisation of the above methol, we can solve the

n n
equation %%8!(!) and in particular —::T§= 0, by successive integration.

(B) -f(y)
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Multiplying both sides by 2dy/dz, we get

dy d® d
2&2‘4 g’2f(") ”

or, dczzz' {ZU} 27, dy

Now, integrating both sides with respect to r, we have

dy\® i
J:}:) =2Jf(y) Z’; dw+01=2J f(y) dy +C.

Let 2[ f(y) dy=4(y).

dilg Y
gp= T VW) +Cu
dy
d = - ,-- ) . ) 1 ratine
T= =+ o)+ 6, whence integrating

r= +y(y, C;)+C, (say).

17°7 (1). Illustrative Examples.

')
Ex. 1. Solve g—-; cos Nx.

Integrating both sides with respoct to x, we have

ay

1 .
= ¢ .
de b%m ne+ A4

Integrating again, y=— 1: , cos nz+ dz+ B,

which is the gencral solution.

d’y_a
Ex. 2. Solve 7 ,’=i-’3-

Multiplying both sides by 2 i':’ we get,

dyd’y_, a du d (rhl) 1 dy
2 iz a2 y* az O dz \dw Qay'd—af
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Now integrating both sides with respect to x, we have

(d”)’=ﬂas 1—, dy+C,

dz
2 1 C,y*—
ya“w‘ G- ; 11;’ -
dy. , NC,y*—a S - S Yy dy
d + -ly- or, \ du=+% Jo.gi—a
a:=;|:-(;' NCy*—a+C,,
1

R :l:g,' NC,y?—a-
1

S G (x-CL)% =0y —a.

This is the general solution.

Note. An alternative method of procedure for solution of the

2
equations of the above type, i.¢., of the type Z;,’ =f(y) is indicated below,

dy _ . d’y_dp_dpdy_ dp,
Put dx~ 2 "ozt dz dydz Pdy
dp _ =3
Pay™ y or, pdp=ay=®dy,

integrating, #p*= —gay~*+ g‘

) dy\?
P e, (dZ) =0,—
Now, the rest is the same as before.

Ex. 8. Solve z? 2 47 "+md'/+n’y=0.

dz? dx
Put z=e* so that z2=log z ;
then ‘-z‘c=e'=:v.
dz
dy _dy dx _ dy,l dd‘y=d ( dt/) dr (d’ +dy)
ds dz ds Cd~ "% 423 dw \Tdz) de” \Tda?" dx
214y, 0y _d,
t.e., T da:"+wda; 323
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.. the given equation reduces to

]
‘2’,’+n y=0.

Multiplying by ﬂd and integrating with respect to z,

dz

du\® . . a 252
gs) ™"y =constant=na? (8ay).

. . 1
intograting, F cos™! ;—:—=fnz+e

857

whence, y=a cos (ns+e), or, y=a cos (n log x+¢) is the required solu-

tion, @ and e being arbitrary constants of integration.

177 (2). Equations of the types

(A) F (g;{, ...... gi, x) -0

(B) F(dn g_i, y)_o.

(A) These equations do not contain y directly.

T

substitution is Z » (derivative of tho lowest order)=gq.

(B) These equations do not contain z directly.

e s BY
substitution is i 2

a*y _ _dp .d34/ 2 d’p d_P)z
Then T pd'y dz® =P dy* 2+ P o ete.

17°7(3). IMustrative Examples.

s ‘l diy\?
Ex. 1. Solve %g {{gx. (d?c!’l) +1=0,

The

The
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a*y_ . . dy_dq

Put d:c’_q’ e gpe da:

.*. the given equation becomes

2z X q—q*+1=0,

dx
' 20 4, —Z log (g — 1) =1
.. g% —1 q= " or, log(qg*—1)=1log ¢,z.
e qn—'1=clm

2
- o 1
L q 1.0-. dﬂ" ~l(1+6la')’

dy _ 2
. der 3 (L+¢,2)* +e¢,,
. = 2.2 Y
. e y"' 3Cl 561 (l+blﬂ') +Cgm+03
4 3
15¢, * (L+c,2)*+coz+cy,

F
o 15¢,2y=4(l+c,x)* +c,z+e,.

o %y _ (du {(d_u)”_(r_?"y)“‘ é_
Ex. 2. Solve y A (d.z) + dr i } =0.

dy _ . d’y_ (ZP
Put de= Y derT d1/

the cquation transforms into
dap 2 2 2 (@P)* 3
YP g, P H TP gy, =0.

. 2 . dp
.. p=qy+(l—q ) , wher q_d!/
This is Clairauts’ for.n.
oo p=Ay+(1—A“)&=Ay+k say whereo 7c=(1—A’)'§.
. an
e, dE= A1/+k

z+ B= y Iog (Ay+?r)=-‘41 log {Ay+(1-A“)&}.
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EXAMPLES XVII(B)

Solve the following equations :(—

2
1. () g Y+ 4y =22 +3.

a® d
2. 0) Y+ o2

3. (i) (D + 8)%y =25¢%%,
N d2
4. (i) (,x'z’

ooy ARy dy
(iii) da* d
5. (i) (D% —4) y=sin 22.

:aﬂﬂ.

-—a,2:c/ =ea.t

+ 3y = 2"~

7—1
6. (i) L;4+7/—91nzr

ey (L2 s
(131) Jx? + 9 = cos .
7. ) (D? -1)y=xe*".
8. (i) (D®+2D+2)y=mxc™".

(iii) (D?+1) ¥ =sin « sin 2z.

(iv) (D®* - D —2) y=sin 2x.
2
9. (1) r7 K ZT/+';/=0‘"+0"".
d i duy _
(33) i 2Ld + k2% =6"
d Yo,y
(11) 2(la:+y e,
a’ _
(v la: —y =cosh z.

oy A%y
(ii) dx® ty=z.

) 20+ T

(ii) (D®+9)y =9¢*".

- 0u=r.

Gi) © U-y=em

‘_C P, 195 ’ll

(ii) (D% +4) y =ain 2.

A
(ii) ¢ Y ¥ dy =1 cos z.
da

.\ d? i
(iv) dwg’ + 4y = sin’zr.

(i) (D% -9)y=e**
(ii) (D*—1) y=c"sin 3.

CcOs .

(v) (D-2)* u=x"e*

2
(v) d ::;’-— y =re® sin .

dz
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2
10. xﬂg—, g- +y=log . [ Put z=e ]
11. (®D®*+ 2D+ 1)y =sin log z2. [ Put z=¢")

12. (i) Show that the general solution of the equation for
S. H. M. »iz.,
2
g%f= ~-n’z,is z =4 cos (nt+¢).

(ii) Bvaluate 11)3""” cos bz

and hence show that
ax

; (@ cos bx +b sin bx).

ax = ¢ _
Je* cos bx dx of + 57

13. Solve in the particular cases :—

2
(i) g —a + 4 =sin 22 ; when =0, y=0 and ZZ=O.

(ii) yg — 5y, +6y=2¢" ; when =0, y=1 and y, = 1.
(iii) (D* - 4D +4)y=2% ; when =0, y=% and Dy=1.

(iv) (D2 —1)y=92; given Dy=3, wheny =1 ; and z=2,
when y= — 1.

Solve :—
. 2 oo a2
14. (i mgggﬂ. (i) 5 4=
15. (i) yg cos®*z =1, (i) ¥ yq =a.

16. y"= tan y sec’y, given ¥’ =0, when y=0.

17. () Jy (ii) —-?!+y,=o.

18. (i) 35’%=w’ sin . (i1) dta .

21
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ﬂ
’ll dTI o dy
19. () m w dx (1]) a-gw—gg‘
d2 dy _ =

21- (1 +ws)y2 +2w‘y1 =9,
22. ydm (da:) +y% log y=0.

4y (@) g,

23. dz?  \dz dz

24. y,-— (?/1)2 =0.
25. yya+(y1)%2=2.

dty _d*y

de*  dz® 0.

26.

ANSWERS

1. (i) y= 4 cos 2z+ B sin 22+ }(2x +3).
(ii) y= A cos z+ B sin z+ (z* — 6x).

dy
dzx

861

2. (i) y=4e**+ B+ 2>~ +3x.  (ii) y=Ade**+Be >*—}(x+3).
3. (i) y=(C,+C.x)e~3*+e?". (ii) y = A cos 3z+ B sin Sz +%e®>.

4. (i) y=C.e®+Crle "+ T e, (ii) y= Ae®+ Be~*+ 46>,

2a
(iii) y= C,e*+ C,e3*+ze?*.
5. (i) y= 4e**+ Be~?*—} sin 2z.
(ii) y=4 cos 2z+ B sin 2z —%x cos 2z.

6. (i) y= A4 cos 2+ B sin z—3x cos z.

(ii) y=C, cos 2z+ C, sin 2z+ §x cos z+ } sin z.

(iii) y= 4 cos z+ B 8in 2+ —% cos 2z.

(iv) y= A cos 2z+ B sin 2z+ §x — 5z cos 22— ;'gz? sin 2z,
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7. (i) y=0,6"+ C,e”*+3e?* (32— 4).
(ii) y=C,e**+ Cye=2"+ Jye®* (6 sin x—cos z).

8. (i) y=e~%(4 cos z+ B sin z+z).
(ii) y= Ae*+ Be ™ — y%¢” (sin §z+4 cos 3x).
(iii) y= 4 cos z+ B sin 2+ %2 sin 2+ v cos 3x.
(iv) y= Ae "4 Be?* + 5% (cos 2z — 3 sin 2z).
(v) y=e?* (A+ Br+ f5x*).
9. (i) y=e=*(C,+ Cox+3x2)+3c*. (ii) y=(4+ Bx)*+¢* (1-K)-2.
(iii) y=(4+ Br+3x?)e*. (iv) y= A"+ Be=*+3x sinh 2.

(v) y=Ae®+ De~"— ;73 {(10x+2) cos x+ (52 — 14) sin z}.

10. y=(A+DBlog a) x+log z+2.

11. y=4 cos log =+ D sin log # —3} sin log 2.

13. (i) y=4% sin £~} sin 22. (ii) y=¢".

(iii) y=3%ze**+3c2+dx+8. (iv) y+2=¢%"2,
14. (i) y=z g 2+ Az+ B. (ii) y=(x-2) *+ Az + B.
16. (i) y=log scc z+ Ax+ B. (ii) C,*y*=a+(C,£C,%2)".

16. (sin y+ Ce®)(sin y+ Ce~*) =0.

17. (i) 8z=2 (Ny—2C. )N Ny+C)E+0..

(i) JCiy*Fy— g 108 (JOIy+ JIFCup)=aC, N+,

18. (i) y=C,+C.z+(6—2z?) sin z — 4z cos z.
(ii) z=2%e*'+C,t+C,. 19. (i) y=34x*+ B.
(ii) a log (y+ B)=2+C. 20. y=C,e"*+C,+3c".

21, y=log (1+2?)+4 tan-'g+B. 22 y=e4 sin z+B cos z
28. *(C,—¢")=0C,. 24, & (C,2+C,)=1.

25. . 9?2 =2z%+ C,x+C,. 28. y=C,6*+C,e~*+C, x+C,.
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17°8. Equation of the nth order.

The linear differential equation of the nth order with
constant coefficients is

dn dn—1
TPt Pa APy =X e ()

or, symbolically (D"+P D" ' +P,D""24:.-+P)y=X (2
or more briefly f(D)y =X, ++ (8)

where P,, P,,...... Py, are constants, and X is a function
of  only, or a constant.

The method adopted in the case of the solution of the
second order equation admits of easy extension to the above
case. Thus, the general solution of (1) consists of two parts
(i) the Complementary Function and (ii) the Particular
Integral, the complementary function being the general
solution of

f(D),/:O .es .ee (4)
and the particular integral being the valne of f(lD) X.

Assuming as before #=¢™® as a trial solution of (4),
we shall find that ¥ =e™® will be a solution of (4),

it f(m)=0, ie.,if m™+Pym™ 4+ Py=0. - (5)

Equation (5) is then the auxiliary equation of (4).
If the auxiliary equation (5) has n rcal and distinct roots
VIZ.y Moy, Nbgyens... maq, then the complete solution of (4) is
y=Cre™"+ Cge™s" + - + Cpe™".
If the auxiliary equation has a multiple real root of order
7, and if this root be e, then f(D) contains (D—a)" as a
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factor, and the corresponding part of the complementary
function will be the solution of (D — a)"y =0.
Assuming, as before, y = e**v,
(D-a)y=(D- a)e**v=e"*D"0
and the solution of D"™v =0, is by successive integration
v=(Co+ Crz+Coz®+ ++ +Cp_12"" %),
whence, y=(Co+Ciz+Cyz®+ -+ +Cpr_rz7 *)e*
is the corresponding part of the complementary function.
If the auxiliary equation has complex roots a+xif, the
corresponding part of the solution is, as before
y =" (4 cos fz + B sin Bz),

and zf a8 are double roots of the auxiliary equation, the
corresponding part of the solution will be

¢*® [(4, + A,z) cos gz + (B, + Byz) sin fz].
The method of obtaining the particular integral of (1)

when X has those special forms [ See Art. 17°5 ] is essentially
the same as shown in the case of the second order equations.

17°9. Illustrative Examples.
Ex. 1. Solve (D*+3D?+4+3D+1)y=e"".

Here the auxiliary equation is »®+3m?4+3m+ 1=0 of which the
roots are —1, —1, —1. .. C.F.=¢"*(Co+C,x+ C,z%).

P l=,. 1 et = 1 e~*
’ (D*+8D?*+3D+1) (D+1)*

- 1 -z 1 -z, 1

“p—1+ 1" 17¢ )

=¢

the general solution is y=e~*(Co+ C,x+ C,2* + §2*).
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Ex. 2. Solve (D*+2D*+3D*+2D+1)y=zé".
The equation can be written as
(D?+ D+1)%y=qge".
Here, the auxiliary equation is (m?+m+1)?=0, it has double

complex i'oots, - %443 N3, —& +id A/3.

C.F. is ¢~ [(4,+ 4,2) cos (§ N32)+(B, +B,z) sin (} N/32)].

1

1 X e f %
Pl iy p 3y ™ = D+ 1) +(D+1)+12

= (DT ':'3!1')' Jgp = sl) [{1 + 1)(11-15 ﬁ]))}’] °
=" 5 {l+D(1+3D} 2x=0"3{1—2D+ s+ s}
= 2e*(x —2).

the general solution is

e ™4 [(4, 4 4,0) cos (3 N/3x)+ (B, +B,z) sin (§ ¥3z))+ Je"(z —2).

asy_
dz® 2

aty

Ex. 3. Solve H
x

+y=sin (2z+3).
The equation can be written as
(D' =1)%y=sin (2z+3).

The auxiliary cquation is (m*—1)?=0; its roots are 1,1, —1, -1,
£, %, —1, —¢. Hence,

C.F.ise" (4,+ 4,x)+e* (B, + B,x)
+(C, + C;x) cos z+ (D, + D,2) sin z. e (1)

1 . 1 .
P. 1. =‘—I—)T:'-i)'; sin (2z+ 3)=«_'_2;)-,:i}, sin (2:5-!-3)

1l .
—225sm(2:z+3). < (2)

Adding (1) and (2), we get the general solution.
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EXAMPLES XVII(C)

Solve :—

. aty
1. (i) -———y 0. [C. P. 1946 (11)(;51-y=0.
Ay _ qdy
2. (i) da”;g-3d + 2y =0. [C. P. 1940

d®y _d%y _ ,dy _
()dw dz* 2dm_0'

7 u (1 d®y | qdu _
() d‘+87:r +81+4y 0.

(iv) (D+1)‘(D' +1)y=0.

o d° VU gymgd— o A%y diy .
3. (i) dz® Y z’ = z* (i) d:z-3+dw2—_
4. (i) (D’ - Dy=e"+e".

(11) (D®* -1y =sin 3z +1).
3
5. GU_ 48U 5dl_o .

dz® “dz® dx
6. (D®+D%-D-1)y=sin’z.

d*y  od%v

7. d'z: 3(‘1 4+4J"6
8 a’y ~ 9 4 4y =% in 2 -
©ode® “dz Y 9

9. (D®*-3D*+4D-2)y=¢€"+ cos z.
10. (D*-4D®*+3D?+4D—4)y=¢%"
11. (D*+1)y=2 cos®3x—1+¢72.
12. (D*+2D%*+1)y=cos z.

18. (D -1)%(D®*+1)%y=¢®+sin%ix.
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t-is dzy dy

14. e dws +d =g%% 4 o
(Z‘ 2
15. dw”+53 2 +4y =360 sm;x 0052

ANSWERS

1. () y=Ae*+e~ 8% (B sin § A3z +C cos } N/82).
(ii) y=A4e*+DBe~*+ C cos z+ D sin z.

2, (i) y=¢* (4+ Bx)+ Ce-2=, (ii) y=A+Be?*+ Ce-=.
(iii) y=¢"% [(4 + Bx) cos z+(C+ Dc) sin ).
(iv) y=e=* (44 Bz+ Cz®)+ D cos z+ E sin z.

-t
3. (i) y=de*+¢ * (Bsin § /324+C cos § \/3r) =2+ 22 ~0.
(ii) y=4 + Bx+ Ce ™+ f5z* — §z° + 2.
4. (i) y=A+B: "+ Ce~*+ 3z (" +e7%).

(i) y=¢~%= (A (0% 'gs:r+B sin 1::3 )-I-Cp‘

+1r-;;5 cos (3.E+1) _’l'!}D sin (31}+ 1)-
y=(4,+4,z) e*+ 4,0
y=C,e"+(C.,+C.x) ¢~ + 3% sin 2r+ 5 cos 2z — 4.
y=¢**(C,+C,x)+C e~"+ 32

y=C,e"?*+¢"(C, cos z+C, sin a)—f5e¢” (% cos 3z —3 sin }x).

® o NS =W

y=e*(C,+C, cos o+ C, sin x) + e+ ((0s £+ 3 sin z).
10. y=(C,+ C,x) e?®+ C,¢"+ C e~ "+ }£2e?".

11. y=e"%*[C, cos ax+ C, sin ax]+¢** [{Ja cos ax+ C, sin azx)
+3 (cos z+¢~*) whero a=1/ /2.

12. y=(C,+C,a) sin 2+(C,+C,z) ro8s z—§x” cos z.
13. y=(C.,+ 0,z) ¢*+(Cs+ C.2) co3s +(C, + C,z) sin
+ 3 x? + 4 — f52? sin z.
14. y=(C,+C,z) *+ C +3e** +3x?+22.
15. y=0C, cos x+C, 8in z+ C; cos 2x+ O, sin 2z +sin 42+ § sin 8z.
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17°10. Homogeneous Linear Equation.

An equation of the form
d" "-1 d“

or, symbolically, (z" D"+ P,z" * D" ! +......
+Pﬂ,_1wD+P")y= X’ ess (2)
where P,, Pj...... Py are constants and X is a function

of z alone, is called a homogeneous linear equation.

The substitution
rx=¢" i.e., z=log z,
will transform the above equation into an equation with

constant coefficients, which has already been discussed in
Art. 17'8. Here the independent variable will be z.

dy _dy dz_ 1 dy
Now, de dz dz =z dz (3)
c_lfg a (1 d:l/) 1 d'u_l_ 1d%y 1
de?® dz\z dz 22dz zd2® «
- 1 d%y _ dy
dz® d=z (4)
d’y_ 1 (& _ d’y d?/)
Similarly, o 72° -3 5 779 4t 2 rpe (5)

Let us write 6 for ché : with this notation, (8), (4), (5) can

be written as

z dy dy. (6)

dx
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T :.g__. 5(6-1)y - (D
s A%

2% "l =5(5-1X5-2)y (8)

dz
x"%ﬂd(6-1)(6-2)---(6-n+1)y e (9)

Note. This is sometimes called Cauchy equation.

17°11. Equation reducible to the Homogeneous Linear
form.
An equation of the form

(ax+d )" "y 2t Pilax+0)" :i[ ’u—?;{ + -

+ Py (a2 + b) +Pny X (10)

where P,, P., ... P, are constants and X 18 a function of z
alone can be reduced to a linear equation with constant
coefficients by the substitution ax+0b=z.

Note. This is somctimes called Legendre equation.

17°12. Illustrative Examples.

d"u 2™y dy
o ms O 1
Ex. 1. Solre 2 o %" ape +2r A

—2y=2z?
Put w=¢" de., z=log .
Then by Art. 17°10, the cquation transforms into

(B(3—-1)(6-2)—5(5—1)+25~2] yy=e?" e (1)
where 6=:lz; or, (6-1)2(5+2) y=¢?

the roots of auxiliary equation are 1, 1, —2.

The O. F. is y=(C,+C,2)e"+C, e~ ?".
. 1 s _ 1,98
And P. L is F=1)i(5+9) P T

24
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.*. the general solution of (1) is
y=(C,+C.2) e*+ C, e "+ %e?".
Hence, the general solution of the given equation is
y=(C,+C, log z) z+ C,z~ 2+ }x2.
Ex. 2. Solve (x22D?+2zD) y=wxe*.
Put x=¢6" t.e., z=log z.
by Art. 17°10, the cquation transforms into
PE-1+20y=eec" - (1)

where 6=gz’ or, (324+38)y=¢*c"-

the roots of tho auxiliary equation are 0, — 1.

the C. F. is y=C,+C,c"

= 1 e .
L= 6+1°
=(1 1 ) o s
5 o+4+1)€
=} o eez 1 Zz ol
5 ¢ 541 °¢
=§ ¢* o dz—c * S e " dz[ By Art. 17°51)]
Pat ¢ =y.

P.L=¢" —e~>{{c*—1) ¢ }=e" ¢ [ Sce Ex. 8, of Art. 17°6 ]

the gencral solution of (1) is
y=C +Cye-*+e "¢ .
Houce the general solution of the given equation is

y=C,+Cyz”"+a7" ¢".
EXAMPLES XVI(D)
Solve the following equations :—
2 d°Y _, Y o
1. =z dor® 4z 7 + 6y = .
2. (z?D?®+a2D-1)y=sin (log =)+ z cos (log z).
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10.

LINEAR EQUATIONS

2
z? d Y4 By ay

dz* dx tay=

(szz—Q)'y=a;2+-;}- |

3 a
333 Z;y'l'fl 2311{ 21,;;/‘ = ().
(*D2®*+xD— 1) y=2x2
a3y ay
3 - — =
dz® +mdm v=

(= +‘>)" @’ ?" -4 (z +2)‘ ’+(‘;/
(a:“D‘+6a:3D3 +92°D* +3xD +1) y=0.

2
L d3 U, q.3 =y _0 o A1

(1] oA y + c" = rl N
T + 32 T z” g Qxy =log r

ANSWERS

. y=0C, 2+ C.x>+ 2.

y=C,z+C,z~"'—3% sin (log z) -+ {2 sin (log 2) —cos (log z)}.

y=(C,+C, log z) o~ *+ Fx2°.

y=0C, 2~ '+ Cz*+ %z logz—}x~"' log x
y=C,z?+C,2""'+0C.,.

y=4{C,+C, log z+ C; (log z)?} z+x*.

y={C,+C, log 2+ C, (log z)*} x+ 3z (log z)*.
y=C,(z+2)2+C,(x+2)°+3 (3x+4).

y=(C,+C, log ) cos (log z)+(C.+ C, log z) sin (log x).
y=(C,+C,log z)z+C.x"*+3z" "' log x.

871



CHAPTER XVIII
APPLICATIONS

18'1. We have already considered in the preceding
chapters some applications of differential equations to geo-
metrical problems. Here we shall have some other applica-
tions of differential equations.

18°2. Orthogonal Trajectories.

If every member of a family of curves cuts the members
of a given family at right angles, each family is said to be
a set of orthoyonal trajectories of the other.

(A) Rectangular Co-ordinates.

Suppose we have one-parameter family of curves
fla, 1, ¢)=0, e (1)

¢ being the variable parameter.

Let us first form the differential equation of the family
by differentiation of (1) with respect to = and by elimina-
tion of ¢ [See Art. 14'2] and let the differential equation be

dy)._ :
d’ (w’ ,!/’ dm O' (2)

If the two curves cut at right angles, and if v, ¥’ be
the angles which the tangents to the given curve and the
trajectory at the common point of intersection, (say =, ¥),
make with the z-axis, we have v~v'=3%x, and therefore,

tan v= —cct ¥'. Since tan "=%Z' it follows that the
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differential equation of the system of trajectories is obtained

by substituting — 1 / dy, . 92 or Win ().

dz Loy — dJ for de

Thus, the differential equation of the system of orthogonal
trajectories is

s (x v, -g—;‘;)-o. e (8)

Integrating (3) we shall get the equation in the ordinary
form.
(B) Polar Co-ordinates.

Suppose the equation of a given one-parameter family
of curves be

flr, 0, ¢)=0 e (1)

and the corresponding differential equation, obtained by
eliminating the arbhitrary parameter ¢, be

("’ 6, Iﬂ) 0. - Q)

If ¢, ¢’ denote the angles which the tangents to the
given curve and the trajectory at the common point of
intersection, (say r, 8), make with the radius vector to the
common point, we have as before tan ¢ = — cot ¢'.

Since tan ¢=r g?-' it follows that the differential equa-

tion of the system of orthogonal trajectories is obtained by

substituting — - ggf 'rde i.e., —r® go for ¢ dB in (2).

Hence, the differential equation of the required system of
orthogonal tragectories is

Flr,0, -2 &)=0. -~ @
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Integrating (3) we shall get the equation in the ordinary
form.

Ex. 1. Find the orthogonal trajectories of the rectanqular hyper-
bolas zy=a’.

Differentiating zy=a? with respect to z, wo have the differontial
cquation of the family of curves

a4 =
a:dm+y—0 (1)

and hence for the orthogonal trajectories, the differential equation is
dx — v ——
wd!-j+y—0, or, xdr—ydy=0.

Integrating this, we have, z*—y?=c?, the required equation of
the orthogonal trajectorios. It rcpresents a system of rectangular
hypaorbolas.

Ex. 2. Find the orthogonal trajectories of the cardioides

r=a (1-—cos 6).
Since, r=a(l—cos0), .. logr=Ilog a+log (1—cos 9).
Difierentiating with respect to 8, we get the differential equation of
the family of curves
ldr_ sinf
r d0 1-—cos @

.". the differential equation of the system of orthegonal trajectories is

_1_(_ ud§)= sinf
r T dr) 1=cos e
or, ‘Z’I.,_ 1-::995—0 ag-=0,
r sin 0
dr, sin @
o ¥ 1tcos 9300
*. integrating, log :l--_-'_—c’:—)s—3=log c;
i.ce., r=g¢ (1+cos 6),

reprosents tho required orthogonal trajectories.
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Ex. 3. Find the orthogonal trajeclories of the system of curves
r"=a" cos nd.
Since 7"=a" cos nd, .'. = log r=mn log a-+-log cos n0.

Differentiating with respeet to 6, (and thereby eliminating a), we
get the differential cquation of the family of curves

ldr__ sin né

"y do~ Tcosn’
the differential cqnation of the system of orthogonal trajec-

torics is

1 (_’_, ¢_1_0)= _sinnf
r dr cos né

dr _sin n6 0=0.
r cos né

integrating, log r— :1. log sin n0=log ¢

. r _
i.¢., log g =logc
(sin no)"

r*=c" sin no.

18'3. Velocity and acceleration of a moving particle.

If a particle be moving along a straight line, and if
at any instant ¢, the position P of the particle be given by
the distance s measured along the path from a suitable fixed
point A on it, then v denoting the velocity, and f the acce-
leration of the particle at the instant, we have

v = rate ol displacoment

=rate of change of s with respect to time

_ds
dt
and, f=rate of change of velocity with respect to time
dv d?s

Tdt at?



376 INTEGRAL CALCULUS

If instead of moving in a straight line, the particle be
moving in any manner in a plane, the position of the
particle at any instant ¢ being given by the cartesian co-
ordinates z, ¥, referred to a fixed set of axes, the components
of velocity and acceleration parallel to these axes will
similarly be given by

vz =rate of displacement parallel to z-axis = ‘gg

vy =rate of displacement parallel to y-axis= (};Z

] -4 (1) _ds
Sfz=rate of change of vyz= 7t \ 2 F7E
_ _ a [dv) _d’u,
Sy =rate of change of v,= dt(dt it?

The applications of these results are illustrated in the
following examples.

Ex. 1. 4 particle starling with velocily u, moves in a straight
line with a umiform acceleration f. Find the velocity and distance
travelled in any timne.

s denoting the distanco travelled by the particle in time £, the
2
acoeleration of the particle is given by the oxpression dt_:’ and so in

2
this oase, Z—t-f=f; .°. integrating, ‘di';;=jt+‘4, where 4 is the inte-

gration constant. Now, g: is the expression for the velocity v of tho

particle at time ¢, and when ¢=0, 4.e., at start, v=u. .". u=0+ 4.

ds—" LN ] (XX}
Hence, v= - ft+u. (1)

Integrating (i), s=3ft?+ut+ B,
where the integration constant B is found in this particular case from
the faot that s=0 when {= 0, .. B=0.

Hence, s=§ft*+ut=ut+§ft*.
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Ex. 2. A4 particle is projected with a velocily u at an angle a to the
horizon. Find the path.

Taking the starting point as the origin, and taking the axes of
co-ordinates horizontal and vertical respectively, if ¢, y denote the
co-ordinatos of the particlo at any time ¢, since there is no force and

therefore no acceleration in the horizontal direction, and since the
vertical acccleration is always the same=g downwards, we have in

this case

d’x_, d’_ _
dtﬂ—ol dta— g.

Hence, integrating,

i@-_—A d!~’=—gt'l'.[3. ol (i)

But %-% reprosent the horizontal and the verbical component

of velocity respectively, and these, at start when £=0, are given by
% cos a and u sin a.
2% cos a= A4, % 8in a=0+ DI,

whereby the integration constants are obtained.

Thus, (i) gives
dz _ av_. .o
g =W ecosa, ,=usine gt.
Integrating again, 2=ut cos a+C
y=ut sin a—3gt*+ D.

Now, since z=y=0 when £=0, we get from alkove, C=D=0.

Hence, z=ut cos a
y=utl sin a —§gt°.

Eliminating ¢, the path of the particle is given by
2

&
Y=o tan e =3¢ I eais

which is evidently a parabola,
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18°4. Miscellaneous Applications.

The examples below will illustrate some other appli-
cations of differential equations.

Ex. 1. The population of a country increascs at the rale pro-
vortional to the mumber of inhabilants. If the population doubles in
30 years, in how many years will it {reble ?

Let = bo tho population in ¢ ycars.

dz_, . . o e (b
dt-—hz, .*. solving, £ = Ce*".
Lot =14, when {=0 ; e C=2a4; S z=aeett
When z=2x,, £=30; e ro=xoe®® ;L 2=,

When =3z, let {=T: .*. Bro=z,c*" : S 3=eMT

. 30k=log, 2 . T _log.3_48

and KI'=loga 3 " 307 log, 2™ g0 "M

‘e T'=30X 35 =48 years approximatoly.

Ex. 2. After how many years will Rs. 100, placed at the rate of
5% continuously compounded, amount (o I3s. 1000 ?

Let 2 be tho amount in { years.

de_ 5 o .—1.
x=kx say, whero 7.,—-20

o =100
solving, = Ce**.

When £=0, z=100; .. C=100, .. z=1006"",

When z=1000, let t=7.  .*. 1000=100e¥T .-, ;T =10,

. KT=log, 10=2'30 nearly. .. T'=3 X2'80=20x 230 =46 nearly.

.*. the reqd. time is 46 years nearly,
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EXAMPLES XVIII

Find the orthogonal trajectories of the following families
of curves :—

1. (i) y=mar. (ii) y=ax".
(iil) x®+ 4° =2ay. (iv) #* =4axr.
(v) ay®=2x" (vi) x* +2y% =aq.
(vii) :r% + ?/%= ag. (viii) 22+ y® +a” =1+ 2aay.
(ix) r=u cos 0. (x) #“=a” cos 20.
(xi) 7 (I + cos 0)= . (xii) 7™ sin n0 = a™.

2. (i) Show that the orthogonal trajectorics of a system
of concurrent straight lines form a system of concentric
circles, and conversely.

(ii) Show that the orthogonal trajectories of the
svabem of co-axial circles
2+ y*+Ux+c=0
form another system of co-axial cireles
x*+y*+%uy—c=0,
where 2 and # are paramecters and ¢ is a given constant.
(iii) Show that the orthogonal trajectories of the
system of circles touching a given straight line at a given
point, form another system of circles which pass through

the given point and whose centres lie on the given line.

[ Take the point of concurrence as the origin. ]
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3. (@) Show that every member of the first set of curves
cuts orthogonally every member of the second

Tg+

da: 'y +y+1

(b) Show that

(i) the family of parabolas y%2=4a (z+a) is self-
orthogonal.

(ii) the family of confocal conics

mz I (b )
2y i~ L (4 being the parameter

1s self-orthogonal.

4. (i) Find the curve in which the radius of curvature is
proportional to the arc measured from a fixed point, and
identify it.

(ii) Find the curve for which the tangent at any point
cuts off from the co-ordinate axes intercepts whose sum is
constant and identify it.

9. TFind the cartesian equation of a curve for which the
tangent is of constant length.

6. A particle is said to execute a Simple Harmonic
Motion when it moves on a straight line, with its accelera-
tion always directed towards a fixed point on the line and
proportional to the distance from it in any position. If it
starts from rest at a distance a from the fixed point, find
its velocity in any position, and the time for that position.
Deduce that the motion is oscillatory, and find the periodic
time.
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7. A particle falls towards the earth, starting from rest
at a height h above the surface. If the attraction of the
earth varies inversely as the square of the distance from
its centre, find the velocity of the particle on reaching the
earth’s surface, given ¢ the radius of the earth, and ¢ the
value of the acceleration due to gravity at the surlace of

the earth.

8. A nparticle falls in a vertical line under gravity
(supposed constant), and the force of air resistance to its
motion is proportional to its velocity. Show that its velo-
city cannot exceed a particular limit.

9. A particle moves in an ellipse with an acceleration
directed towards its centre. Show that the acceleration is
proportional to its distance from the centre.

10. In a certain culture, the number of bacteria is
increasing at a rate proportional to the number present. If
the number doubles in 3 hours, how many may be expected
at the end of 12 hours ?

11. After how many years will a sum of money, placed
at the rate of 5% continuously compounded, double itself ?

12. Radium disappears at a rate proportional to the
amount present. If 5% of the original amount disappears
in 50 years, how much will remain at the end of 100 years ?

13. A tank consists of 50 litres of fresh water. Two
litres of brine each containing 5 gms. of dissolved salt are
run into the tank per minute; the mixture is kept uniform
by stirring, and runs out at the rate of one litre per minute.
If m gms. of salt are present in the tank after ¢{ minutes,
express 7 in terms of ¢ and find the amount of salt present

after 10 minutes.
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14. The electric current I through a coil of resistance R

and inductance I satisfies the equation RI+ L‘g v,

where V is the potential difference between the two ends
of the coil. A potential difference ¥V'=aqa sin wt is applied to
the coil from time {=0 to the time {=a/w, whero a, @ are
positive constants. The current is zero at {=0 and V is zero
after {=a/w; find the current at any time hoth before and
after t =n/w.

15. A horizontal beam of length 21 {t., carryiug a uniform
load of w lhs. per foot of length, is freely supported at both
ends, satis{ying the differential equation

2
EI (;' )

¥ being the deflection at a distance z from one end. If y=0
at =0, and 7. =0 at »=1[, find the deflection at any point ;
also finil the maximum deflection.

=$wz?® — wir,

16. A horizontal beam of length I simply supported at its
end subject only to its own weight satisfies the equation

where ¥, I, w are constants. Given y,=y=0 at 2=0
and at =1, express the deflection ¥ in terms of z.

17. A harmonic oscillator consists of an inductance T,

a condenser of capacitance C and an e.un.f. 7. Find the

charge ¢ and the current . when E=E, cos w{ and initial

conditions are g=¢q, and 1=1i, at {=0, ¢, g satisfying the
equations

d?q +.9 _Eo

di*" LC L

. 1
What happens if w= J GL

cos wt, 1= (fi(‘z
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ANSWERS
1. (i) 2 +y*=a’. (ii) z2+ny®=c" (iii) 2+ 9% =2cz.
(iv) 2z°+y*=c*.  (v) 27 +3y*=c". (vi) y=ecz?

4

a4
(vii) 23—y’ =c3,

(viii) y (1 —9*)—z ' (1 —2?)+sin~'y—sin-lz=c.

(ix) r=rc sin 0, (x) 72 =c* sin 20.
(xi) » (1 —cos 8)=2c¢. (xii) »" cos nd=
4. (i) Equi-angular spiral. (ii) Parabola.

5. w= Ja’-y*+ia{log (a— a*~y?) =log (a+ AJa*—y*)},

if y=a, when 2 =0.

6. v= N/,u(a‘—x‘), L= Ji cos™*! z v when p is the aceeloration a

a unit distance. Period

N
7. /\/ 2agh, 10. 16 times the original number.
a+h
11. 14 years ncarly. 12, 334 of the original amount.
13. 5¢ (1+—-§—0—-) 8.; 914 gms
D 50"+‘t gm .y 3 gma.

_Rt
14. Tor ¢ <:. I=,,, f‘+1u[ }8in wf—wl) (coswi—e 1‘)]

I R _ Rt
T awis WL 1,
and fort > » I= T“_H“(Hc )

w —d4lp3 —8l%x) - —owl* |

15. v=4im1

_w [ v o013 75 ).
16. y—ﬂiEI(m 2z +l.z)
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E,C 1 =2 . s 1
17, q=(qo—-1--_——f,-—z.‘—-'a) co8 Jfb‘t'l' JLG 10 BIN Uﬁct

E.C

+ 1:";7,“:5& cos wi.

imipo0s i t— L. (f,,——ﬁﬁg---) sin ~1- ¢
JLC' AL 1-w¥LC JLC

— ; Fod4 - ain ut,

If w=- 1 i.e., frequency of e.n.f.=natural frequency oscilla-
JIC

tion 4.e., resonance will take place and the circuit will be destroyed.
Bofore destroying

]

_ i . F, .
q =, cos wit+ o sin wt+2Lw { sin wi

.. _ . E.f1 . ) )
=1, c0S wl—q, w Sin wt+2L( " sin wl4-{ cos wt




CHAPTER XIX
THE METHOD OF ISOCLINES

19°1. It is only in a limited number of cases that
a differential equation may be solved analytically by the
preceding methods, and in many practical cases where the
solution of a differential equation is needed under given
initial conditions, and the above methods fail, a graphical
method, the method of isoclines is sometimes adopted. We
proceed to explain below this method in case of simple
differential equations of the first order.

Liet us consider an equation of the typo

:?Z =flx, ). e (i)

As already explained before, the general solution of
this equation involves one arbitrary constant of integration,
and hence represents a family of curves, and in general,
one membor of the family passes through a given

point (=, ¥).
] l .
Now, if in (i) we replace :]a/: by 9, we get an eguation

fl@, ¥)=m, which for any particular numerical value of
m represents a curve, at every point of which the value

of (‘Z: i.e., the slope of the tangent line to the family of
curves represented by the general solution of (i) is the
same as that numerical value of m. This curve f(x, ¥)=m
is called an isoclinal or isocline. For different numerical
values of m we get different isoclinals, which may be
graphically constructed on a graph paper. Through differ-
ent points on any one isocline, short parallel lines are
drawn having their common slope equal to the particular
value of m for that isocline. Similar short parallel lines
are drawn through points on other isoclinals. If the

256
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number of isoclines drawn be large, so that they are
sufficiently close to one another, the short lines will ulti-
mately join up and appear to form a series of ocurves
which represent the family of curves giving the general
solution of (i) and a particular member of the family
passing through a given point represents fhe particular
solution wanted. All necessary informations regarding the
particular solution may now be obtained from the graph.

As an example, let us consider the differential equation

%g.-:w—y’_ The isoclinals are given by m=z-y* or

y® =2 —m, a series of equal paraholas shifted left or right

X'

from 7¥®=2, (whicl' corresponds to m=0) as shown in
the figure. The dotted curves represent graphically the
solutions of the differential equation.



APPENDIX
SECTION A
A NOTE-ON DEFINITE INTEGRALS

1. Definition.

We have two methods of defining definite integrals : one

based on the notion of limits, the other based on the notion
of bounds.

The first method based on the notion of limits is given
in Note 2, Art. 6'2.

The second method based on the notion of bounds
is given below.

Let the interval (a, b) he divided in any manner into
a number (say n) of sub-intervals by taking intermediate
points

Let M, and m, be the upper and lower bounds of f(z)
in the 7r-th sub-interval (zr-i, ) and let &, denote the
length of this sub-interval. The lower bound (denoted by J)
of the aggregate of the sums S=XM,i, (obtained by
considering all possible modes of sub-division), is called

b
the Upper Integral and is denoted byja f(z) de, and the upper
bound (denoted by j) of the aggregate of the sums s=m,s,
b
is called the' Lower Integral and is denoted by .L fz) de.

When the lower and upper integrals are equal, 7.e., when 5 = .J,
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then f(z) is said to be integrable and the common value
is said to be the integral of f(z) in (a, b) and is denoted

by I:f(w) dz.

It ecan be shown by what is known as Darbouzx’s theorem
that both the definitions are equivalent when f(z) is
integrable.

Note. The inlegral defined above when it oxists, is called a

Riemann integral, as it was first obtained by the great mathematician
Ricmann.

2. Necessary and sufficient condition for inte-
grability.

We give below without proof the necessary and sufficient
condition for the integrability of a bounded function f(z).

If there be at least onme pair of sums S, s for f(r) for
a sub-division of the interval (a, b) such that
S—-s<eg,
where ¢ is any arbitrarily small positive number, then f(z)
is integrable.

Note. It can be casily shown that the sum or difference of two or
mors functions integrable in (a, b) is also integrable in (b, a).

3. Integrable functions.

(i) Functions continuous in a closed interval (a, b) are
integrable in that interval.

(ii) Functions with only a finite number of finite
discontinuities in a closed interval (a, b) are integrable in
that interval.

(iii) Functions mounotonic and bounded in an interval
(a, b) are integrable in that interval.
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4. Important Theorems.
I. If f(x) is integrable in the closed interval (a, b) and if
b
flx) > 0 for all z in (a, b), then j flz) dz >0 (b > a).
a

Since, f(z) > 0 in (a, b), it follows that in the interval
(-1, z+) the lower bound m, > 0 and therefore

s=3Im;0, =20

4, whieh is the upper bound of the set of numbers

s, =2 0.

b
Since, f(x) is integrable, j=5 f(z) dr
a

b
and hences f(x) dx = 0.
a

Alternatively.

Since, f(z) is integrable in (a, b),
b
J @) dz=Lt (L) .

Since, f(x) > 0 in (a, b), S ) = 0n (a, b).
I Ef(cr) dr = 01in (a, b).

n->00

J: f(z) dz = 0 in (a, b).

Note. 1t can be shown similarly that ii f(z) < O in (a, #), then
b
S“ flz) dxz < 0.

I1. If f(z) and g(x) are integrable in (a, b) and f(x) > g(x)
in (a, b), then jb flx) dz > j: g(x) dz (b > a).

Consider the function ¥(z) = f(z) — g(z).
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Then 9(z) is integrable in (@, 3) and ¥(z) > 0 in (a, b).
r
by (i), " ve) dz > 0 in (a, )

1.8., .Z {f(x) - g(@)} dz > 0 in (a, b)

s.e., : flx) dz > I: g(z) de.

L

III. If M and m are the upper and lower bounds of
the integrable function f(z) in (a, ), b > a, then

md-—a)< J: f(z) de < M (b - a).

Since, m < f(z) < M in (a, b),
. {fz)—m} > 0 in (a, b),

| /@)~ mbds > 0.

b
. f@) de = m Jb'dw, i.e., = mb— a).
a

o

Similarly, since, M~ f(z) > 0, we can show
b
M(b-a)> j f(a) de.
(/]

Hence the result.

This is known as the FH%rst Mean Value Theorem of
Integral Calculus.
Cor. The above theorem can be written in the form
S; flx) dz=(b—a) p, when m < n < M ;

and if further f(z) is continuous in (a, b) then f(r) attains the value
# for some value ¢ of ¢ such thatla < § < b*, and so,

S: #(z) dxe=(b—a) 1(3).

*See Authors’ Differential Calculus.
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IV. If f(z) and g(z) are integrable in (a, b) and if g(z)
maintains the same sign throughout (a, b), then

I : f(z) ¢(z) dz = uj : o(2) dz, wherem < u < M,

m and M being the lower and upper bounds of f(x) in (a, b).
Let us assume for the sake of definiteness that ¢(x) is
always positive in (a, b).
Now, m < f(x) < M in (a, b).
Since, g(z) is positive
my(z) < flz) gla) < Myg(m),
f(z) o(z)— mg(x) > 0,

[ Z iflz) golz) — mg(z)t dz > 0.

-

r~

Zf (x) glzr) dr > m J : g(z) dz
and f(z) g(x) — My(x) < O,

" 12) o(z) - M) do < 0

ion [ ° 7@) ole) dz < MJ * i) de.

o

) J : o(z) dx <J’ ’ @) glz) dr < M j ’ g(z) da,

b b
J S(@) 9(z) dz = uj g(z) dr, where m < u < M.
a a

Cor. If further f(z) is conlinwous, then f(z) attains the value p
for some value { of x whorea < $ < b, dwe., f(§)=pn.

*« when f(x) is continuors,

S " 10x) g(x) dx=1) S " g0 dx
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Note. This is the generalised form of the First Mean Value Theo-
rem. The theorem III can be obtained from this by putting g(x)=1.

V. If f(t) is bounded and integrable in the closed interval

(a, b) and if F(ac)-=J' =|:f(t) dt where ¢ is any point in (a, b),
then
(1) F(zx) is a continuous function of = in (a, b).

(2) If fz) is continuous throughout (@, b) then the deri-
vative of F(x) exists at every point of (a, b) and =f(z).

(3) If flx) is continnous throughout (a, b) and if ¢(x) be
a function of x such that ¢'(x) =f(z) throuyhout (a, b), then

z«'(m)=j " 1) dt=4fa) - ola).

(1) Let us consider a point z+/ in the neighbourhood

of z in (a, b).
[ zt+h
Then Flr+h)= £(t) dt.

J a

"z

+h &£
Fla + 1) - F(z) = 1) dt — j f(2) dt

J

[ x4+ h

= f@t) dt = uh,

by Cor. of (III) where ¢ lics between the upper and lower
bounds of f(¢) in the interval (z, z+ ). Since f(¢) is integra-

ble, m and M are finite and so is w.

Lt {Flz+h)— Flah=Lt ph=0.
h=>0 h->0

Lt Fle+h)=Fz)
h->0 :

F(z) is a continuous function of z in (a, b).
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(2) We have F(z+ k) - F(z) =J i £(2) dt

=hf({), where 2 < (L 2+
since f(¢) is continuous, [ See Cor. of (IIT1) ]

FatD-F@_ ), for 1 # 0

When & = 0, { = z and f({) = f(z), since f(t) is continuous.

1t ¥ (z+h)— F(z)
h->0 h

i.e., F (x)=f(z).
(8) Since f(r) is continuous throughout (a. b), as proved

above,

exists, and = f(z),

I (@)=f(r), ie, IF(x)=4¢'()
. F' (r)-¢'(x)=0.
Let  v(z)="F(x)- ¢(z).
. ¥’ () =0 everywhere in (a, b).
Hence, vw(z)=F(x)— ¢(r) = a constant ¢, in (a, z) **- (i)
[ See Diff. Calenlus, Art. 6'7, Ex. 1. ]

When z=a, F(a) =J' : () dt=o.
Since from (i), F(a) - ¢(a)=¢c, .. —¢(a)=c.
Consequently from (i), F(z) = ¢(z) + ¢ = ¢(x) — ¢(a),
e |10 dt=o00)- 9lo).
In particular,
| 210 at=¢ )9 @).

Note. The rolation given in (8) is known as the Fundamental theo-
rem of Integral Calculus. [ For an alternative proof, See Art. 6'4. ]
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6. Change of variable in an integral.

b
To change the variable in the integra.lj af(w) (dz) by the
substitution z = ¢(t), it is necessary that

(i) #(¢) possesses a derivative at every point of the
interval a < ¢ < B, where ¢ (a)=a and ¢(B)=>, and ¢'()#0
for any value ¢ in (a, B).

(ii) fl4(t)] and ¢'(¢) are bounded and integrable in (a, B).
When the above conditions hold good, then and then only
we have

[! @ an={" risen o) ar.
Illustration :

(1 dg
IJet I"’S -1 1'+w“u

Putting x=tan 8, we get I=S 11;" d0 =g,

Putting »=1]t, we get

[ dt _
I-—-——S_l T 3,

The reason for the discrepancy lies in tho fact that 1/¢ does not
possess a derivative at £=0, an interior point of (-1, 1); in fact the
function itself is undefined when ¢=0.

6. Primitives and Integrals.

It ¢' () =f (x), then ¢ (x) is the primitive of f(z). The
integral of f (z) on the other band is Lt Xf({,)sr, or symboli-

7->00
b
callyj f(x) dz, 7.e., the analytical substitute for an area
a

* in case f (z) has a continuous graph.

The distinction between the two is that while integrals
can be calculated, primitives cannot be calculated.
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The question as to whether a primitive exists, and the
question of the existence of an integral of f () in (a, b), are
entirely independent questions. It is only in the case of
continuous functions that they are the same.

Indefinite integrals can properly be described as the
Calculus of primitives.

The connection between primitives and integrals is
represented by the Fundamental theorem of Integral
Calculus viz.,

j : P () de=F (5)— ¥ (a)

Illustration :
. . 1 1 1
(i) f(z)==.sin L3 7 08 ga’ (z#0)
=0(z=0).

Here, «?x {;x’ sin a:l’} =f(z) for 0 and =0 for z=0, so that

1
primitive exists but S+1 f () dx does not oxist.

() f(x)=0(z #0), =1(2=0);herein (0, 1), S;f(m)dmexists,

and =0, but no primitive exists.

7. Illustrative Examples.
dz -

1 1
Ex. 1. Show that 3 < SO Jd—z 4+ < B
We have, 4 > 4—(x*~2®) in (0, 1),
or, i >\ J(a -2+ ).

_1_' 9.6 1 < 1 —— .
N N Y i T

11, ., 1 Sl Gz _
SD 2dm, t.€., 2 < 0 :\/4—56—+z°
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Again, 4—2z? < 4—2?+2° in (0, 1).

¢ -—'-!::—- - > - '1
Y 7 S Ly Fep I

Sl ,\/4—27 >Sl ;/4_—3- +2z

0 e 0 e e
| . 1 1 . 1 . T Sl dz

.. -1 .. =t Ty g, = D> RN g R
sSin 24? o‘bG,Sln 2"&(’ 6 0 ,4 a s

Hence the result.

Ex. 2. If SZ flx) dx exists, show that

12 rte) a| <" 1 1001

We have [f(£.)5, +f(§a)3 + -++e+ +f(§n)on]
SIS 1+ 1fC ) 182)] + -+« | fZa} | 8al
i.e, | Zf(8)8,1 < Z1FE) 18]
o Lt ZfE)5 <2 LE | G 18].

]S:f(w) dz l < S:: |f(x)| de.
Otherwise :
Since S: f(x) de exists, .°. S:I flx)| dz exists.
We bave —|f(x)| < f(x) < |f(x)l
-S" | flo)|dz < Sbf(rc) dr < Sb (fl)lde
a a a

800y l S: f(x) dxi < SZ f(z) | dz.



SECTION B

A NOTE ON LOGARITHMIC & EXPONENTIAL
FUNCTIONS

1. Introduction.

The fundamental concepts of Calculus furnish a more
adequate theory of the logarithmic and exponential functions
than the mefhods adopted in elementary books. There
exponential function is first introduced, and then logarithm
is defined as the inverse function ; but in the treatment of
these functions by the principles of Calculus, logarithm is
first defined by means of a definite integral, and then ex-
ponential funection is introduced as the inverse of logarithm.
From the stand-point of these new definitions, certain
important inequalities and limits can be obtained more
easily and satisfactorily.

2. Logarithmic Funection.

The natural logarithm log x is defined as
X

dt
log x=51.t—, - (1)

where 18 any positive number, i.c., x > 0.

Thus log # denotes the area under the curve ¥ =1/t from
t=1toit==.

From the definifion it {ollows that log 1=0, and
[ . 1/t is continuous for ¢ > 0 ], from the fundamental
theorem of Integral Calculus it follows that log # is
a continuous function and has a derivative given by

& (log )= - - (@)

Since the derivative is always positive, log = increases
steadily with z (i.e., log = is & monotone increasing function).
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Putting ¢ =1/% in the integral for z, we get

v
logm=j:‘%§-_}' 'Bﬁi_".".._logl. e (8)

Putting ¢ =vu [ ¥ =a fixed number > 0 ] in the integral
for log (xy), we get

log (« )=j-w§?§= T du_ =@_Jlmdu
& I 4 Iy % 1 % 1

=log z—log (1/y)=log z+logy. - (4)

In this way, other well-known properties of logarithms
can be developed.

Since log  is a continuous monotone function of =z,
having the value O for =1, and tending to infinity as
increases, there must be some number greater than 1, such
that for this value of z we have log =1, and this number
is called e. Thus e is defined by the equation

loge=1, i.e., J: i-t=1. -+ (5)

3. Exponential Function.

If y=1log =, then we write z=¢V --- - (6)
and in this way the exponential e¥ is defined for all real
values of ¥. In particular e®=1, since log1=0. As v is
a continuous function of x,  is a continuous function of ¥.

z=¢Y, so that ¥ =log «x, and so
ay _ 1. . de_qfdy_ __ 4
de =z’ "t dy 1/dmm é
.4 ooy
2.6., dy (6) €. (7)

More generally, ;y (e*- ) =ae™

a®(a > 0) is defined as 6% !°8 2, go that log a® =2z log a.
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Thus, 10% = gz log 10,

The inverse function of aV is called the logarithm to the
base a.

Thus, if z=4", ¥ =log, .

4. Some Inequalities and Limits.
(i) To prove 2 < e < 3.

2
For Sdt-1<t<2; CLh< 1t < .

1
2dt 52 . X e dt
. . 9
.. Slt< ldt,q,.e.,<1,q,.a.,<51t 2 <e
Sﬂd4= ed_c+s'=da Sl du +Sl due
1¢ 1t 2 i 02—u 024%
{1 adw S du . edt
—4504_ug>4 0 2 bl >1, 'c.e.,>slt
3>e.

(s2) To prove T + < log (1+2) <z (z > 0).

+
From definition, log (1+z)= S zdt

Ll<t <142, L 1[(1+:c) < 1ft < 1.

. 1 14 14z gt 14z
'1+m81 ¢iht<s1 t<S1 dt,

. 1
ey 14 < log (1+2) < z.
1
v It = =
(i43) To prove oy log (1+x)=1,

1 log (1+2x) .
I4g <5 <1, and since 1/(1+x) and 1 both

tend to 1 as 2> 0, tho reqd. limit=1.

From (ii),

: Lt ]
(iv) To prove oo @ log a.

Bince the derivative of a” is a” log a, and that for z=0 is log a,
it follows from the definition of the derivative for =0, that
It a*—a® . ab—1

Lt 5 e .’Z'}_t) o 7 =loga.
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Putting x for h, the required result follows.
- Lt €-1_
When a=¢, we get podeP 1.

n
(v) To prove Lt {1+ a:} e=¢"
n=-»00 n

g log (1+a:t)-—i ol it follows that the derivative of

log (1+at) for {=0 is . Tlence, from the definition of the derivative
for =0, wc get
h->0 h

Putting h=1/{, we see that
It 9’) 0. Lt ( @ )‘ -
tro0 $ log (1+ ¢ [ thaoo log {1+ ¢ z.

Since,

Since the exponential function is continuous, it follows

Lt m)r= z
;_’w( +§ e’.

If we suppose {—>co through positive integral values ouly, the
required result follows.

n
Putting =1, we got Lt (1+ :;) =e,

n—>00

; It nr—1)= .
(vi) To prove S n(NVzx—1)=1log

Sincoe the derivative of ¢Y=¢¥, and that for y=0is 1, we have from
the definition of tho derivative for =0,

k h
? g€, Lt ¢ 1—1.

Lt ¢ —-—e
h>0 h " w0 A

Putting 2z/n for & where 3 is any arbitrary number, and n ranges
over the sequence of positive integers, we get,
. fm—1
L { i-._n.-}= o Lt (e —1)=2.
”_t)oo n- 1, d.e., L n(®¥et —-1)=2
Putting z=log x, so that ¢*=x, the required result follows.
31 Lt .l-g__=
(vii) To prove o 0, when a > 0.
Hi¢>1and 8> 0, it <tf72,
x i op - B *
log w-sl-d:& Sl B dt, ie., < -"fz——l' 1i€sy < % for ¢ > 1.
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Suppose a > B.
log = af 1 1
0 < —953 < ﬁma' .6, < 8 -;:—‘.-—_—B forxz > 1.

But (lla;"'ﬂ)-b 0, as z—> o0, since, a > S.
Hence the result.

Note. Replacing z by n where n is a positive integer,
Lt ]°ga"'=0, when a > O (n—>>0 through positive integral
n—>»00 n
values),

Lt Yo - great.
(viii) To prove " 0, for all values of n, however great

From (vii), ™A log € = 0, when 2 = <o, for 8 > O.
Putting a=1/8 in tho loft side, and raising it to the power a, we get
z~! (log z)2—> 0, as £ —> oo,

Now putting x=¢¥, so that log z=y,
the required result follows.

SECTION C
ALTERNATIVE PROOFS OF SOME THEOREMS
1. Alternative proof of Art. 9°3.

Let AB be the curve, 04 and OB be the radii vectores
corresponding to 0 =« and 6 = 8.

o

Divide g—a into n parts, each equal to # and draw the
26
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corresponding radii vectores. Let P and @ be the points
on the curve corresponding to 8=a+7h and 6=a+(r+1)h
and let us suppose 6 goes on increasing from a to f. With
centre O and radii OP, OQ respectively draw arcs PN, QM
as in the figure. Then the area OPQ lies in magnitude

between
20P%. 1 and 30Q%.1

i.e., between % [fia+ 7h}]1%h and % [fla+ (r +1) k}]2A.

Hence, adding up all the areas like OPQ, it is clear that
the area AOB lies between

%:2:7: [fla+7h}]%h and 1}:.‘;‘: [fla+(r+1) k)20,

Now, let n = o, so that h—>0 ; then as the limit of each
of the above two sums is

[ ts0on an,

it follows that the area AOB is also equal to the definite
integral.

2. Alternative proof of Art. 11°1.

(i) Volume of a solid of revolution.

Y 0/

N

o

™M

Let a curve CD whose equation is ¥ =f(z), be rotated
about the z-axis so as to form a solid of revolution. To find
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the volume of the solid generated by the revolution, about
the x-axis, of the area ABDC, bounded by the curve ¥ =f(z),
the ordinates at 4 and B and the z-axis, let @ and b be
the abscissa of C and D.

Divide 4B into u equal parts, each equal to /%, and draw

ordinates at the points of division. Let the ordinates at
r=qg+rh and x=a+(r+1)h be PL and QM, and let us

suppose ¥ goes on increasing as x increases from a to b.

Draw PN perpendicular on QM, and QR perpendiocular
on LI’ produced. Then the volume of the solid generated
by the revolution of the area LMQ@P lies in magnitude
between the volumes generated by the rectangles L MNP

and LMQR,
i.e., between a | fia ++14]2h and = [ f {a +(r + 1) K}]2h.

Hence, adding up the volumes generated by all areas
like LMQP, it is clear that the required volume lies in
magnitude bhetween

.-z"z::: [f{a+rh}]%0 and nné:[ f{a +(r+ 1)A}]2".

Now, let 7 —><, so that ~# —> 0 ; then as the limit of
each of the above two sums is

b o b
.vzj- [A(z)]? dz, i.e., nJ' v? de,
a a
it follows that the required volume is also equal to this
definite integral.
(i1) Surface-area of a solid of revolution.

Let the length of the arc from C up to any point P(z, %)
be s and suppose that surface-area of the solid generated
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by the revolution of the arc CD about the z-axis is required.
As in the case of the volume, divide AB into n equal
‘parts, each equal to A, and erect ordinates at the points of
-division. Let the ordinates at z=a +rh and z=a +(r + 1)A
be PL and QM, and let the arc PQ be equal to I. The
surface-area of the solid generated by the revolution of
LMQP about the z-axis lies in magnitude between the
curved surface of two right circular cylinders, each of
thickness I, one of radius PL and the other of radius QM,
s.¢., between
2nf {a +7h} | and af {a +(r + 1)h}1.

Hence, adding up all surface-areas generated by element-
ary areas like PQ, it is clear that the required surface-area
lies in magnitude between

n-1 n-1
On Zo'% fla+ohih and 27:22 fﬁ Fia+0+Dhih.
r= r=

Now, let % —> o, so0 that » —> 0 ; then }% tending to %'

the limit of each of the above two sums is

b b
ﬂnjaf(x) Z—; de, i.e., QnJ 7 ds.

a

Hence, the required surface-area is also equal to this
definite integral.

3. Alternative proof of Ex. 3, Art. 9°3.

Show that the area between the folium of Descarles and
its asymptole is equal to the area of ils loop, each being
equal to $a°.

The equation of the folium is z®+y* = 3axy.

Turn the axes through = ; that is substitute

£ —y)] N2 and (n+y)/ N2
for £ and y respectively. Then the given equalion transforms into
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4
z 3c—x
y2 — _3_ ) where c____..- a.

c+x N2
1 3c—2z
'J3 @ '\/( ct+ax )
Here, c+z=0, i.e., x= —c is the equation of the asymptote MN

OA=38¢, OD=q.

the required area o between the Folium and the asymptote

0 8o —
=2 L¢ S =2 S ( c _x) ,
toc )=t y dz ;»./3 t-)c A/ etz )@

=_‘§_._ It 50 z (3¢ —x)
t->c J-t ~’(1:+c)(3c -2)

‘.. y=

M |y

z (8c—zx)
'J(.z: + c)(‘?m 'z:)

Liet I=S - dx=92c? S (1—2 cos 6)(1+cos 9) da,

[on putting z=c —2c cos 4, so that cos 0=q;—f]

= — 9202 S (cos @ +cos 20) do
= —92¢? (sin 0+ 4 sin 20)

~ —20% Jsin (oos* ° )+ L sin( 2 cos-+ °52)}
= —9¢ {sm (cos 9¢ )+2 sin{ 2 cos 20

-2 _5. i ( -10_:2) ( -10':?)]0
r=-7 g¢ -tr_'fc 8in {cos™* —5 +3 sin{ 2 cos vl | I

=2a% 2 [on putting c=-:/1—2- a]
=$a2.
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Again L, the arca of the loop OPAQ
=2 area of the port'on OP4
_a (3B x (8¢ —x)
2 So yae="7s So Niz +c)(Bc—7)

Putting as before x=c~2¢ cos 0,
=2 _ - 9'__“’) 3 s ( -1 cffc)]-"c
L 73 2¢? [sm( coS 9 +4 sin [ 2 cos ge o

403\,3
W32 2

4. Proof of the result of Art. 17°5(f).

When X =zV, where V is any function of x,

=3a’ [on putting ¢= 1/2 a]
N’

1 , 1 ’
the, 55y = ==~ 1y /P gy ¥
We have, D(zV)=zDV+V
D3*aV)=D@DV)+ DV=aD%V +2DV
and similarly, D"(aV)=zD"V+aD" 'V

=xD V+(dDD)I/ - (1)
Hence, f(D)aV=af(D)}V +F(D)T. - (Y)
1

Now, put f(D) V=7, ; hence I =i "
(2) hecomes

1
f(]))wf(D) Vi=zV L+j(]))f(]))

1
00 @ ) V2= {5y V2 iy D) iy Vs

Transposing, we get
1 ={ 1 4 }__1__ .
7@) 2= 4y P ) Ve
| Dropping suflix, we get

Lo [ 1
7)==~ 1) " @)} 1y -



SECTION D
A NOTE ON INTEGRATING FACTORS

1. Rules for determining Integrating Factors.

Let the differential equation be

Mdz+N dy=0. e (1)
The condition that it should be exact, is
oM ©ON
= s sas (5]
oy Or (2)
oM _OoN
Rule (1). T M is a function of # only,

say f(z), then

(=) dz will be an inteyrating factor of (1).

If M dao+ N dy=0, be an eract equation when multiplied
by eff(x)dr then, we must have

a?’; ( MeSf(x) d:l:) = aa.a_: (lveff(a:) dz)

.. %1—’ (D) dx = gi\r oIf() Az 4 NIfe) dz f(z)
oM _ON
1.e., 'E-)'U"I\Tai =f(z).
ON _oM

Rule (I1). TIf aa:_M_Ql_; f(y), (a function of ¥ alone)

e/V) AV ig an integrating factor.
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Proof is similar to that given above.
Rule (III). If M and N are both homogeneous func-

tions in z, ¥ of degree » (say), then

1
ﬂ[a§—+N——g}’ (Mz+Ny #0)

is an integrating factor of the equation (1).

We can easily show that

TNCR.

oy \Mz+ Ny|] Oz \Mz+ Ny

if we remember that M and N are homogeneous functions
oM

of degree n and hence a:a-M+'y -=n M
ox ay

0 0
and =z aiv+ Y af}=nN.

If Mzt Ny=0, then %= -:—; and the equation

reduces fo
ydr—x dy=0

which can be easily solved.

Rule (IV). 1If the equation (1) is of the form
y flzy) dz + glzy) dy=0

1

et - N
then Mz = Ny (Mz—Ny#0)

is an integrating factor of (1).
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We can easily show that
9 (_M ) -0 (____I_V )
oy \Mz— Ny/ 0Oz \Mz—- Ny
; [ y flzy) ] 0 [ zg(xy) ]
v oy Lay {fly) = gley]  ox Lay 1f(ay) - glayht

provided we remember aa F(T'/)—-T T (zy).

If however Mz — Ny =0, then %= z and the equation
reduces to
xdy+ydr=0

which can be easily solved.

2. Ilustrative Examples.

Ex. 1. Solve: (2z%-+y?+2)dx+zxy dy=0.

oM ON _ . e

Here 2y =92y ; 3p — Y the equation is not exact.
IM_oN
W o _%-y_ 1

Now, =N " -

1
by Rule (I), 1. F.=¢f: 2=, logz_

Multiplying both sides of the given equatioa by z, we have
(222 +zy?+2?) de+-zy dy=0,
or, 2x°dz+z? dz+zy (y dzc+zx dy)=0,
or, 2z° dz+z* dr+zyd(zy)=0,
or, 2r® dr+z? dr+zdz=0, where z=21y.

. gt x° 2
integrating, §~+-§+§=Gu

.. reqd. solution is 8z*+2z°+3z"y*=c.
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Ex. 2. Solve: (z®>+y®) dx—zy? dy=0.

a_y_ 2. aN_ —_ . . N
Here, dy = 3y?; op = ¥ the equation is not exact.
Now, . 1 N —1;

Mz+Ny z*+ay*—zy° =z
The equation is homogeneous.

.*. by Rule (111), 3-34 is an integrating factor.

Multiplying both sides of the given cquation by m-l;» we have

3 2
( 1 +=1£;) dz—y: dy=0.,
& [ b

This 1s exact.

o

Now, S de=8( e
r i}

4

- _1 ¥
)da:—loga: 3

- _1u®
S Ndy= 3 z?
. by Art. 15°5, the solution is
H
log o — 3 Z_‘=c, 1.¢., y*=3z* log r+cx®.
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Applications, 372
Area between two curves
cartesian, 211
polar, 217
Areas of closed curves, 227
Arcas of plane curves
cartesian, 205
polar, 216, 3G3
Arca of
cardioide, 217
cissoid, 222
cycloid, 209
ellipse, 207, 213
folium of Descartes, 219
parabola, 208
Joop, cartesian eqn., 210
loop, yolar cqn., 218
Astroid, 290
Auxiliary cquation, 341
cqual reots, 311
pair of complex rcots, 342
real and distinct roots, 341

Bernoulli’s equation, 327
Beta function, 178, 182
Binomial differentials, 179
By parts integration, 388

Cardioide, 297
Catenary, 289

INDEX

Centroid, 273
circular are, 274
parabolic lamina, 275
quadrant of an ellipse, 276
solid hemisphere, 277
Chainetto, 289
Change of variables, 14, 355
Cissoid, 295
Clairaut's equation, 335
Complementary function, 318, 331
Complcte primitive, 305
Condition for integrability, 388
Constant of integration, 3
Convorgent integral, 133
Cyeloid
vertex downwards, 287
vertex upwards, 286

Darboux’s thcorem, 388

Definite integrals, 2, 91, 93, 102, 349
as the limit of a sum, 91
general properties, 117
geometrical interpretation, 99
lower limit, 3, 92
upper limit, 3, 92

Difiorential cquations,
dcfinitions, 302
degree, 303
exact, 320
first degree, 310
first order, 310
formation, 303
geometrical intcrpreta.tioﬁ, 305
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homogeneous, 815

nth order, 363

order, 303

ordinary, 802

partial, 302

rosolvable into factors, 332

second order, 340

solution, 805

solvable for z, ¥, 333
Delta function, 134
Divergent integral, 133

Elementary rules of Integration, 4

Equations of second order, 340
special type, 325

Equiangular spiral, 296

Eulerian integral, 173

Evolutes, paratola, 292

HExact equation, 820

Exponential curves, 294

Exponential function, 360

First mean value theorem

of integral calculus, 390, 392
First principle, 93
Folium of Descartes’, 293
Fundamental integrals, 6
Fundamental theorem, 1, 101, 355

Gamma function, 183
Geometrical interpretation
definite integral, 99
differential eqn., 305
General laws of integration, 5
General solution, 305
Generalised definition, 93
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Homogeneous equation, 315

special form, 316
Hyperbolic function, 25, 66
Hypo cycloid, 291

Improper integrals, 132
convergent, divergent
oscillatory, 133

Inequalities and limits, 361

Interior limit, 92

Infinite range, 132

Integrability, 388
necessary and sufficient
condition, 388

Integrable function, 350

Integrating factors, 321, 323

Integrals
definite, 3, 92, 93, 102, 349
Eulerian, 173
improper, 132
indefinite, 1, 2
infinite, 132
Riemann, 388

Integration, 2
a8 the limit of a sum, 91
by parts, 38
from first principle, 93
of infinite series, 140
of power series, T40
of rational fraction, 78

Intrinsic equation of
cardioide, 253
catenary, 252
cycloid, 252

Intrinsic equation to a curve from
cartesian eqn., 249



pedal eqn., 251
polar eqn., 250
Isocline, 347

Length of arc of
cardioide, 245
cycloid, 243
evoluto, 247
loop, 243
parabola, 242

Length of plano curve from
cartesian, 240
parametric, 241
pedal, 246
polar, 244

Lemniscate, 299

Limits, 92, 361

Limacon, 298

Line integral, 229

Linear equation, 299, 340

Logarithmic curve, 294

Logarithmic spiral, 265

Lower integral, 387

Method of substitution,
definite integral, 104
indcfinito integral, 14

Miscellaneous application, 341

Moment of inertia, 273
circular plate, 281
elliptic lamina, 281
rectangular lamina, 280
sphere, 282
thin uniform rod, 279

On some well-known curves, 286
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Orthogonal trajectories, 872
cartesian eqn., 372
polar egn., 373

Pappus’ theorem, 267

Parabolic rule, 232

Particular integrals, 340, 347, 363
methods, 820

Perfoct differential, 320

Primitives and integrals, 356€

Principal value, 134, 137

Probability curves, 294

Radius of gyration, 279
Rational fractions, 78
Rectification, 240
Reduction formulme, 125, 163

double paramoter, 171

singlo parametor, 164

special devices, 177
Riemann integral, 388
Rose petal, 300

Series represented by definite
integral, 107

Scparation of variables, 310

Sign of an area, 225

Simpson rule, 229

Sine spiral, 301

Singular solution, 306, 335, 336

Solids of revolution, 259, 264
volume, 260, 264

Some well-known curves, 265

Special trigonometric function, 57 -

Spiral of Archimedes, 297

Standard integrals, 24, 41, 43, 59

r-‘/
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Strophoid, 304

Superior limit, 92
Surface-area, 239, 365
Summation of series, 107
Symbolical operation, 348
Symbolical operators, 347

Tractrix, 290
Trial solution, 340

Upper integral, 349
Upper limit, 3, 92

Velocity, 376

VYolumes, 259, 364

Volume and surface-area
cardioide, 264
cycloid, 263
parabola, 261, 262

Witch of Agnesi, 296
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